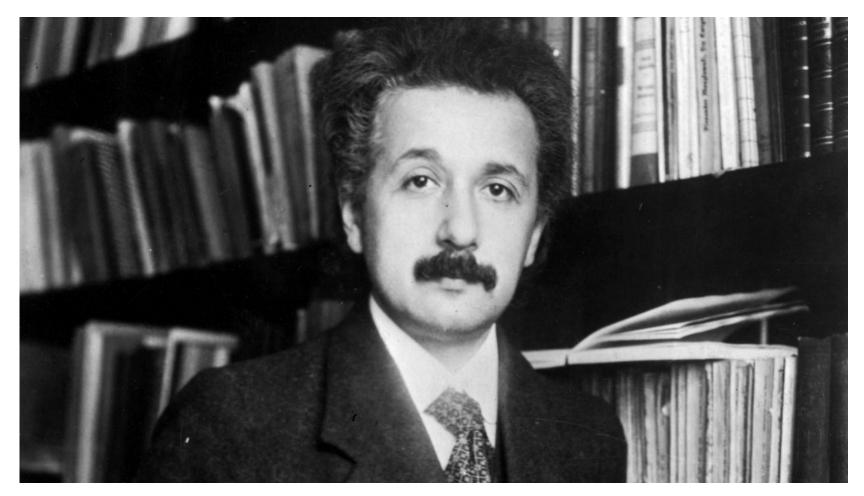


Учимся решать расчетные задачи ЕГЭ по химии.

М.А.Ахметов, доктор педагогических наук, кандидат химических наук, профессор кафедры методики естественнонаучного образования и информационных технологий ФГБОУ ВО «УлГПУ им. И.Н.Ульянова», один и авторов УМК по химии

> Москва 25 октября 2017

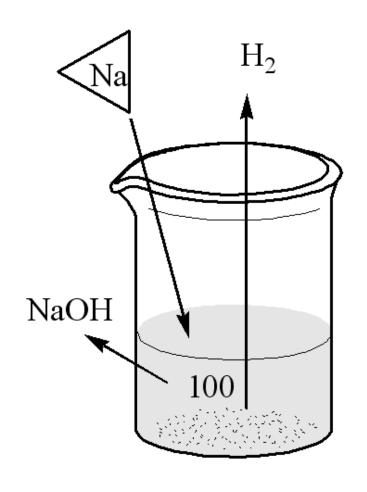

Расчетная задача химические реакции, протекающие в растворах

34

При нагревании образца карбоната кальция часть вещества разложилась. При этом выделилось 4,48 л (н.у.) углекислого газа. Масса твёрдого остатка составила 41,2 г. Этот остаток добавили к 465,5 г раствора соляной кислоты, взятой в избытке. Определите массовую долю соли в полученном растворе. В ответе запишите уравнения реакций, которые указаны в условии задачи, и приведите все необходимые вычисления (указывайте единицы измерения искомых физических величин).

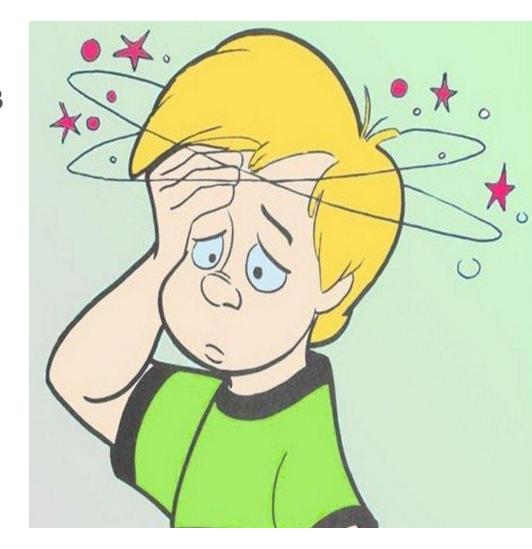
Imagination is more important than knowledge

Рекомендации по решению задач


Рекомендации по решению задач

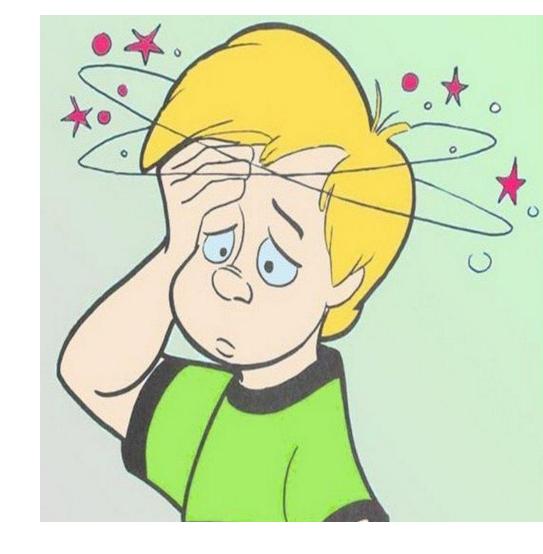
Визуальная модель задачи

Определите массовую долю гидроксида натрия растворе, Полученном взаимодействием 2,3 г натрия с 100 г воды



ЧТО НУЖНО ЗНАТЬ ДЛЯ РЕШЕНИЯ ХИМИЧЕСКОЙ ЗАДАЧИ?

ХИМИЧЕСКИЕ СВОЙСТВА НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ


- 1. ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- 2. РЕАКЦИИ ИОННОГО ОБМЕНА
- 3. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

ЧТО НУЖНО УМЕТЬ ДЛЯ РЕШЕНИЯ ХИМИЧЕСКОЙ ЗАДАЧИ?

- 1. ПРИМЕНЯТЬ ХИМИЧЕСКИЕ ФОРМУЛЫ И УРАВНЕНИЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ХИМИЧЕСКИХ РАСЧЕТОВ
- 2. НАХОДИТЬ НУЖНЫЕ ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ, ИСПОЛЬЗУЯ ВЗАИМОСВЯЗЬ ФИЗИЧЕСКИХ ВЕЛИЧИН: МАССЫ, КОЛИЧЕСТВА ВЕЩЕСТВА, МОЛЯРНОЙ МАССЫ и МОЛЯРНОГО ОБЪЕМА, МАССОВОЙ

Основные величины и их обозначения

Основные величины	Обозначения	Размерность
Количество вещества	п или ν	моль
Macca	m	г (грамм)
Объём	V	л (литр)
Молярная масса	M	г/моль
Молярный объём	V_n	л/моль
Массовая доля	ω или w	доли от единицы или %
Объёмная доля	φ	доли от единицы или %
Выход продукта	η	доли от единицы или %
Плотность	ρ	r/cm³

Возможные величины и их обозначения

Основные величины	Обозначения	Размерность
Число структурных единиц	N	
Число Авогадро	N _A	моль ⁻¹
Мольная доля	χ	доли от единицы или %
Молярная концентрация	С	моль/л

Основные формулы, используемые при решении задач

$$n = \frac{m}{M}$$

$$n = \frac{V}{V_n}$$

$$n = \frac{N}{N_A}$$

$$\varphi = \frac{V(s - sa)}{V(cmecu)} \qquad \omega = \frac{m(s - sa)}{m(p - pa)}$$

$$\omega = \frac{m(\theta - \theta a)}{m(p - pa)}$$

$$\rho = \frac{m}{V}$$

$$\eta = rac{m_{np.}}{m_{
m T}}$$

$$\eta = rac{V_{np.}}{V_{
m T}}$$

$$\eta = \frac{n_{np.}}{n_{\rm T}}$$

С чего начать?

29. 27. Простейшие Задачи на расчеты по растворы уравнениям 34

Что изображено на рисунке?

Чей чай слаще?

• Лиза обычно пьёт чай из маленькой чашки (150 мл), в которую добавляет обычно 1 чайную ложку сахара. Олег пьёт чай из стакана (230 мл), в который кладёт 2 чайных ложки сахара. Сергей пьет из кружки (400 мл), в который кладет 3 чайных ложки сахара. У кого чай слаще? (в чайную ложку помещается 7 г сахара. Расставьте посуду с сахаром в порядке возрастания массовой доли сахара.

Чей чай слаще?

• Лиза обычно пьёт чай из маленькой чашки (150 мл), в которую добавляет обычно 1 чайную ложку сахара. Олег пьёт чай из стакана (230 мл), в который кладёт 2 чайных ложки сахара. Сергей пьет из кружки (400 мл), в который кладет 3 чайных ложки сахара. У кого чай слаще? (в чайную ложку помещается 7 г сахара. Расставьте посуду с сахаром в порядке возрастания массовой доли сахара.

7/(150+7)=0,045

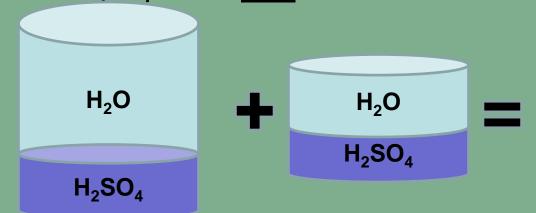
21/(400+21)=0,049

Задача 1. В 150 г воды растворили 50 г фосфорной кислоты. Найти массовую долю кислоты в полученном растворе.

• Решение:

Анализ условия задачи!

Поиск решения-


) [

Реализация плана решения!

:200r

5%.

Задача 2. Смешали 120 г раствора серной кислоты с массовой долей 20% и 40 г 50%-ного раствора того же вещества. Массовая доля кислоты в полученном растворе равна %.

Раствор 1 m(p-pa1)=120 г ω1=20%=0,2 Раствор 2 m(p-pa2)=40 г ω2=50%=0.5

Раствор 3 m(p-pa3)= m(p-pa1)+ m(ppa2)= 120 +40=160г ω3=?

 $ω3=m3(H_2SO_4)/m(p-pa3)×100%$ $m3(H_2SO_4)=m1(H_2SO_4)+m2(H_2SO_4)=ω1×m(p-pa1)+$ +ω2×m(p-pa2)=120×0,2+40×0,5=24+20=44 Γ ω3=44/160×100%=27,5%. OTBET: 27,5%.

Задача 3. К 180,0 г 8%-ного раствора хлорида натрия добавили 20 г NaCl. Массовая доля хлорида натрия в образовавшемся растворе равна %.

H₂O + 20 r = NaCl

NaCl

Раствор 1 m(p-pa1)=180 г ω1=8%=0,08

Раствор 2 m(p-pa2)=180+20=200г ω2=?

ω2=m2(NaCl)/m (p-pa2)×100%

m2(NaCl)=m1(NaCl)+m(NaCl)=180 ×0,08+20=34,4r

 $\omega = 34,4/200 \times 100\% = 17,2\%$. OTBET: 17,2%.

Задача 4. К 200 г 10%-ного раствора нитрата калия добавили некоторую массу нитрата калия и получили 20%-ный раствор. Масса порции равна

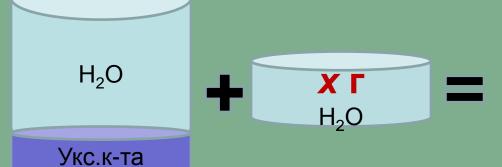
H₂O

KNO₃

KNO₃

Раствор 1 m(p-pa1)=200 г ω1=10%=0,1

Раствор 2 m(p-pa2)=200+ *x* ω2=20%=0,2


 $\omega 2 = m2(KNO_3)/m (p-pa2) \times 100\%$

 $m2(KNO_3)=m1(KNO_3)+m(KNO_3)=200\times0,1+x=20+x$

 $\omega 2 = (20 + x)/(200 + x) \times 100\% = 20\%$

Ответ: 25г

Задача 5. Определите массу воды, которую надо добавить к 20 г 70%-ного раствора уксусной кислоты для получения 5%-ного раствора уксуса

Раствор 1 m(p-pa1)=20 г ω1=70%=0,7

Раствор 2 m(p-pa2)=20+ *x* ω2=5%=0,05

 $\omega 2 = m2(KNO_3)/m (p-pa2) \times 100\%$

 $\omega 2 = (20 \times 0.7)/(20 + x) \times 100\% = 5\%$

Ответ: 260г

Понятие «уравнение химической реакции»

$$MgCl_2 + NaOH = Mg(OH)_2 \downarrow + NaCl$$

Понятие «уравнение химической реакции»

$$MgCl_2 + 2NaOH = Mg(OH)_2 \downarrow + 2NaCl$$

Задача на избыток одного из реагентов

- Сколько граммов осадка образуется в результате смешения растворов, содержащих 44 г гидроксида натрия и 47,5 г хлорида магния?»
- Три метода решения
- 1) Через количество вещества (рекомендуемый)
- 2) Метод пропорции
- 3) Стратегия двух гипотез

Задача на избыток одного из реагентов – метод «количество вещества»

- Сколько граммов осадка образуется в результате смешения растворов, содержащих 44 г гидроксида натрия и 47,5 г хлорида магния?»
 - 1. Рассчитать количество вещества, обычно по формулам:

$$n(NaOH) = \frac{m(NaOH)}{M(NaOH)} = \frac{44\Gamma}{40\Gamma/\text{моль}} = 1,1$$
 моль

$$n(H_2SO_4) = \frac{m(MgCl_2)}{M(MgCl_2)} = \frac{47,5\Gamma}{95\Gamma/\text{моль}} = 0,5$$
моль

Задача на избыток одного из реагентов - метод «количество вещества»

- Сколько граммов осадка образуется в результате смешения растворов, содержащих 44 г гидроксида натрия и 47,5 г хлорида магния?»
- 2. Соотнести полученные количества с коэффициентами в уравнении реакции

0,5 моль 1,1 моль

 $MgCl_2+2NaOH=Mg(OH)_2\downarrow+2NaCl$

1 моль 2моль

3. Путем логических рассуждений и простейших умозаключений сделать вывод, что гидроксид натрия взят в избытке, следовательно, расчет количества продукта химической реакции необходимо проводить по веществу, взятому в недостатке, то есть по хлориду магния.

Задача на избыток одного из реагентов – метод «количество вещества»

- Сколько граммов осадка образуется в результате смешения растворов, содержащих 44 г гидроксида натрия и 47,5 г хлорида магния?»
- 4. Определить количество продукта реакции по веществу, взятому в недостатке

0,5 моль 1,1 моль 0,5 моль

 $MgCl_2+2NaOH=Mg(OH)_2\downarrow+2NaCl$

1 моль 2моль 1 моль

5. Рассчитать массу гидроксида магния $m(Mg(OH)_2)=n(Mg(OH)_2)*M(Mg(OH)_2)=0,5 \text{ моль}*58г/моль=29 г.$

- Сколько граммов осадка образуется в результате смешения растворов, содержащих 44 г гидроксида натрия и 47,5 г хлорида магния?»
- 1. Из наличия в условии задачи масс двух реагирующих веществ, сделать вывод о ее типе «избыток-недостаток».
- 2. Записать уравнение реакции и рассчитать массы веществ, участвующих в реакции, в соответствии с уравнением

$$MgCl_2+2NaOH=Mg(OH)_2\downarrow+2NaCl$$
 95 г 80 г

- Сколько граммов осадка образуется в результате смешения растворов, содержащих 44 г гидроксида натрия и 47,5 г хлорида магния?»
 - 3. Принять массу одного из реагентов, взятую из условия за неизвестную

4. Рассчитать массу этого вещества в соответствии с уравнением реакции

$$m(NaOH) = \frac{80r * 47,5r}{95r} = 40r$$

• Сколько граммов осадка образуется в результате смешения растворов, содержащих 44 г гидроксида натрия и 47,5 г хлорида магния?»

 $m(NaOH) = \frac{80r * 47,5r}{95r} = 40r$

5. Полученную расчетным путем массу гидроксида натрия сравнить с данной в условии массой: если эта рассчитанная масса оказывается меньше, то сделать вывод, что данное вещество в избытке; если рассчитанная масса оказывается большей, то сделать вывод, что данное вещество в недостатке. Рассчитанная масса оказалась меньшей, значит в избытке гидроксид натрия, следовательно, в недостатке хлорид магния.

- Сколько граммов осадка образуется в результате смешения растворов, содержащих 44 г гидроксида натрия и 47,5 г хлорида магния?»
- 6. Рассчитать массу продукта химической реакции методом пропорции по веществу, взятому в недостатке

47,5 Γ
$$m(Mg(OH)_2)$$

 $MgCl_2 + 2NaOH = Mg(OH)_2 ↓ + 2NaCl$
95 Γ 80 Γ 58 Γ
 $m(Mg(OH)_2 = \frac{58 Γ * 47,5 Γ}{95 Γ} = 29 Γ$

Задача на избыток одного из реагентов – «стратегия двух гипотез»

«Сколько граммов осадка образуется в результате смешения растворов, содержащих 44 г гидроксида натрия и 47,5 г хлорида магния?»

47,5
$$\Gamma$$
 x=29
MgCl₂+2NaOH=Mg(OH)₂ \downarrow +2NaCl
95 Γ 58 Γ

44
$$x=31,9$$
 $MgCl_2+2NaOH=Mg(OH)_2\downarrow+2NaCl$ 80 Γ 58 Γ

Задачники Кузнецовой Н.Е., Лёвкин А.Н.



Стратегии

успешного изучения

химии в школе

Спасибо за внимание!

Ахметов Марат Анварович

- maratakm@ya.ru
- http://maratakm.narod.ru
- http://him-school.ru

Благодарим за внимание!

