

Результаты ЕГЭ по физике 2017 года и перспективы 2018 года Часть 2

В.А. Опаловский, кандидат технических наук, учитель высшей квалификационной категории, методист по физике корпорации «Российский учебник»

О чём пойдёт речь?

Часть 1. Статистика ЕГЭ

Часть 1. Проблемные задания

Часть 2. Изменения в структуре КИМ

Часть 2. Методические возможности УМК для подготовки к ЕГЭ

В презентации использованы материалы Демидовой М.Ю. http://www.fipi.ru/

Изменения в КИМ ЕГЭ – 2018

Количество заданий увеличено с 31 до 32

Добавлено задание №24 «Астрофизика»

Добавлены новые линии в заданиях № 4, 10, 13, 14, 18

В п. 1.2.7. кодификатора добавлена 2-ая космическая скорость

Максимальное количество баллов увеличено с 50 до 52

Новые виды заданий

Nº4	Момент силы относительно оси вращения и кинематическое описание гармонических колебаний
Nº10	Тепловое равновесие и температура, внутренняя энергия одноатомного идеального газа
Nº13	Направление кулоновских сил
№14	Закон сохранения электрического заряда и связь напряженности поля и разности потенциалов для однородного электростатического поля
Nº18	Элементы СТО

Nº24

Астрофизика

24

Рассмотрите таблицу, содержащую характеристики некоторых спутников планет Солнечной системы.

Название	Радиус	Радиус	Средняя	Вторая	Планета
спутника	спутника,	орбиты,	плотность,	космическая	
	KM	тыс. км	Γ/cM^3	скорость,	
				м/с	
Луна	1737	384,4	3,35	2038	Земля
Фобос	~12	9,38	2,20	11	Mapc
Ио	1815	422,6	3,57	2560	Юпитер
Европа	1569	670,9	2,97	2040	Юпитер
Каллисто	2400	1883	1,86	2420	Юпитер
Титан	2575	1221,9	1,88	2640	Сатурн
Оберон	761	587,0	1,50	770	Уран
Тритон	1350	355,0	2,08	1450	Нептун

Выберите два утверждения, которые соответствуют характеристикам планет.

- 1) Ускорение свободного падения на Обероне равно 7.7 м/c^2
- 2) Масса Луны меньше массы Ио
 - 3) Объём Титана почти в 2 раза больше объёма Тритона
- 4) Ио находится дальше от поверхности Юпитера, чем Каллисто
- 5) Первая космическая скорость для Тритона составляет примерно 1,03 км/с

Рассмотрите таблицу, содержащую характеристики некоторых астероидов Солнечной системы.

Название	Примерны	Большая	Период	Эксцентр	Macca,
астероида	й радиус	полуось	обращения	иситет	КГ
	астероида,	орбиты,	вокруг Солнца,	орбиты	
	KM	a.e.*	земных лет	e**	
Веста	265	2,37	3,63	0,091	$3,0.10^{20}$
Эвномия	136	2,65	4,30	0,185	8,3·10 ¹⁸
Церера	466	2,78	4,60	0,077	$8,7\cdot10^{20}$
Паллада	261	2,78	4,61	0,235	$3,2\cdot 10^{20}$
Юнона	123	2,68	4,36	0,256	$2,8\cdot 10^{19}$
Геба	100	2,42	3,76	0,202	1,4·10 ¹⁹
Аквитания	54	2,79	4,53	0,238	$1,1\cdot 10^{18}$

^{*1} а.е. составляет 150 млн. км.

** Эксцентриситет орбиты определяется по формуле: $a = \sqrt{1 - \frac{b^2}{a^2}}$, где b — малая полуось, a —большая полуось орбиты. e = 0 — окружность, 0 < e < 1 — эллипс

Выберите два утверждения, которые соответствуют характеристикам астероидов.

- 1) Астероид Геба вращается по более «вытянутой» орбите, чем астероид Веста
- Большие полуоси орбит астероидов Церера и Паллада одинаковы, значит они движутся по одной орбите друг за другом
- Средняя плотность астероида Церера составляет 400 кг/м³
- Первая космическая скорость для астероида Юнона составляет более 8 км/с
- брбита астероида Аквитания находится между орбитами Марса и Юпитера

Рассмотрите таблицу, содержащую характеристики планет Солнечной системы.

Название	Среднее	Диаметр	Наклон	Первая	Средняя
планеты	расстояние	в районе	оси	космическая	плотность,
	от Солнца	экватора,	вращения,	скорость,	г/см ³
	(B a.e.*)	KM		км/с	
Меркурий	0,39	4 878	28°	2,97	5,43
Венера	0,72	12 104	3°	7,25	5,25
Земля	1,00	12 756	23°27′	7,89	5,52
Mapc	1,52	6 794	23°59′	3,55	3,93
Юпитер	5,20	142 800	3°05′	42,1	1,33
Сатурн	9,54	119 900	26°44′	25,0	0,71
Уран	19,19	51 108	82°05′	15,7	1,24
Нептун	30,52	49 493	28°48′	17,5	1,67

^{*1} а.е. составляет 150 млн км.

Выберите два утверждения, которые соответствуют характеристикам планет.

- 1) Ускорение свободного падения на Юпитер составляет 42,1 м/с²
- 2) На Сатурне не может наблюдаться смены времен года
- Орбита Марса находится на расстоянии примерно 228 млн. км от Солнца
- 4) Сатурн имеет самую маленькую массу из всех планет Солнечной системы
- 5) Ускорение свободного падения на Уране составляет около 9,6 м/с²

Рассмотрите таблицу, содержащую характеристики планет Солнечной системы.

Название планеты	Диаметр в районе экватора,	Период обращения вокруг	Период вращения вокруг оси	Вторая космическая скорость,	Средняя плотность, г/см ³
	KM	Солнца		км/с	
Меркурий	4 878	87,97 суток	58,6 суток	4,25	5,43
Венера	12 104	224,7 суток	243 суток 3 часа 50 минут	10,36	5,25
-	10.756	265.2		11.10	5.50
Земля	12 756	365,3 суток	23 часа 56 минут	11,18	5,52
Mapc	6 794	687 суток	24 часа 37 минут	5,02	3,93
Юпитер	142 800	11 лет 314	9 часов 55,5	59,54	1,33
_		суток	минут		
Сатурн	119 900	29 лет 168	10 часов 40	35,49	0,71
		суток	минут		
Уран	51 108	83 года 273	17 часов 14	21.29	1,24
		суток	минут		
Нептун	49 493	164 года 292	17 часов 15	23,71	1,67
		суток	минут		_

Выберите два утверждения, которые соответствуют характеристикам планет.

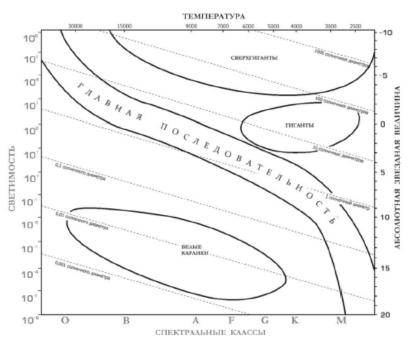
- Большая средняя плотность Меркурия свидетельствует о том, что на этой планете отсутствует вода.
- В течение венерианского года планета не успевает совершить полный оборот вокруг своей оси
- 3) Масса Нептуна в 2 раза больше массы Сатурна.
- Ускорение свободного падения на Юпитере составляет 59,54 м/с²
- Первая космическая скорость вблизи Сатурна составляет примерно 25,1

Используя таблицу, содержащую сведения о ярких звёздах, выполните задание.

Наименование	Температура,	Macca	Радиус	Созвездие,
звезды	К	(в массах	(в радиусах	в котором
		Солнца)	Солнца)	находится
				звезда
Капелла	5200	3	2,5	Возничий
Менкалинан	9350	2,7	2,4	Возничий
(β Возничего А)				
Денеб	8550	21	210	Лебедь
Садр	6500	12	255	Лебедь
Бетельгейзе	3100	20	900	Орион
Ригель	11 200	40	138	Орион
Альдебаран	3500	5	45	Телец
Эльнат	14 000	5	4,2	Телец

Выберите два утверждения, которые соответствуют характеристикам звезд.

- Звезды Капелла и Менкалинан относятся к одному созвездию, значит они находятся на одинаковом расстоянии от Солнца
- 2) Звезда Денеб является сверхгигантом
- Звезды Альдебаран и Эльнан имеют одинаковую массу, значит они относятся к одному и тому же спектральному классу.
- 4) Звезда Бетельгейзе относится к красным звёздам спектрального класса М
 - Температура на поверхности Ригеля в 2 раза ниже, чем на поверхности Солнца.

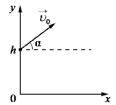

Рассмотрите таблицу, содержащую сведения о ярких звездах.

Наименование	Температура,	Macca	Радиус	Плотность по
звезды	К	(в массах	(в радиусах	отношению к
		Солнца)	Солнца)	плотности
				воды
Антарес	3300	18	560	1,5 • 10 ⁻⁷
Арктур	4100	4,2	26	3 • 10 ⁻⁴
Bera	9500	2,8	3,0	0,14
Сириус В	8200	1	2 • 10 ⁻²	1,75 • 10 ⁶
Ригель	11 200	40	138	2 • 10-5
α Центавра	5730	1,02	1,2	0,80
70 Змееносца	4900	0,8	0,89	2,2
40 Эридана	10 000	0,44	1,7 • 10 ⁻²	1,25 • 10 ⁸

Выберите два утверждения, которые соответствуют характеристикам звезд.

- 1) Звезды Антарес и Ригель являются сверхгигантами
- Звезда Арктур относится к голубым звездам спектрального класса О
- Звезда Сириус В относится к звездам главной последовательности на диаграмме Герцшпрунга-Рассела
- 4) Температура поверхности Веги ниже температуры поверхности Солнца
- 5) Звезда 40 Эридана относится к белым карликам

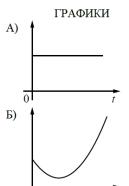
24 Выберите два утверждения о звездах, которые соответствуют диаграмме.



- Температура звезд спектрального класса G в 2 раза выше температуры звезд спектрального класса A
- 2) Ввезда Бетельгейзе относится к сверхгигантам, поскольку ее радиус почти в 1000 раз превышает радиус Солнца
- Плотность белых карликов существенно меньше средней плотности гигантов
- Звезда Антарес имеет температуру поверхности 3300 К и относится к звездам спектрального класса А
- Жизненный цикл» звезды спектрального класса К главной последовательности более длительный, чем звезды спектрального класса В главной последовательности

Задания с ответом в виде двух цифр

№ 6, 7, 12, 17, 18 — важен порядок следования цифр № 5, 11, 16, 24 — любой порядок цифр


В момент t=0 мячик бросают с начальной у скоростью \vec{v}_0 под углом α к горизонту с балкона высотой h (см. рисунок). Графики A и Б представляют собой зависимости физических величин, характеризующих движение мячика в процессе полёта, от времени t.

Установите соответствие между графиками и физическими величинами, зависимости которых от

времени эти графики могут представлять. (Сопротивлением воздуха пренебречь. Потенциальная энергия мячика отсчитывается от уровня y=0.)

K каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите <u>в таблицу</u> выбранные цифры под соответствующими буквами.

Ответ:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) проекция импульса мячика на ось у
- 2) кинетическая энергия мячика
- 3) модуль ускорения мячика a
- 4) потенциальная энергия мячика

В таблице представлены данные о положении шарика, прикреплённого к пружине и колеблющегося вдоль горизонтальной оси Ox, в различные моменты времени.

t, c	0,0	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
<i>x</i> , MM	0	5	9	12	14	15	14	12	9	5	0	-5	-9	-12	-14	-15	-14

Из приведённого ниже списка выберите два правильных утверждения и укажите их номера.

- 1) Потенциальная энергия пружины в момент времени 1,0 с максимальна.
- 2) Период колебаний шарика равен 4,0 с.
- 3) Кинетическая энергия шарика в момент времени 2,0 с минимальна.
- 4) Амплитуда колебаний шарика равна 30 мм.
- 5) Полная механическая энергия маятника, состоящего из шарика и пружины, в момент времени 3,0 с минимальна.

Ответ:		
--------	--	--

Некоторые темы задач второй части КИМ

	Уравнение Эйнштейна для фотоэффекта;
27	формулы для энергии или импульса фотонов

31 Электростатика; постоянный ток; магнитное поле

32

Геометрическая оптика; электромагнитные колебания; электромагнитная индукция

Основные проблемы ЕГЭ

Очень слабо развито умение решать задачи

Отсутствует единая система физических знаний

Есть ряд тем, которые усваиваются традиционно плохо

УМК для оптимальной подготовки к ЕГЭ

Пурышева Н.С.

Базовый

«ДРОФА»

Касьянов В.А.

Базовый

«ДРОФА»

Касьянов В.А.

Углублённый

«ДРОФА»

Грачёв А.В.

Базовый Углублённый

«ВЕНТАНА – ГРАФ»

УМК по физике Н.С. Пурышевой

10 – 11 класс Базовый уровень

Проблема:

- Абсолютное большинство школьников учат физику на базовом уровне (2 часа в неделю)
- ЕГЭ по физике второй по популярности
- Даже среди выпускников, которые идут сдавать ЕГЭ, большинство учатся на базовом уроне
- При этом выпускники хотят получить на ЕГЭ хорошие баллы

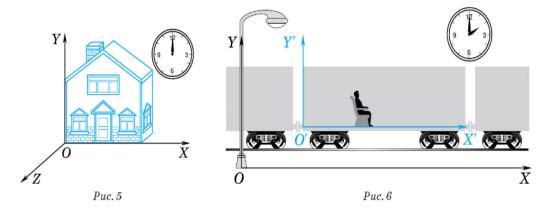
Вариант решения:

• Совмещать в урочной деятельности обучение физики с подготовкой к ЕГЭ по программе Пурышевой Н. С.

Учебник – для освоения физической теории

Оптимальный УМК при двух часах в неделю:

- 56 параграфов в 10 классе
- 59 параграфов в 11 классе
- Исключён материал, не относящийся к базовому уровню и не входящий в ЕГЭ



✓ Удобное структурирование учебного материала

✓ Доступный для современного школьника язык изложения

§ 5. Основные понятия классической механики

- 1. Макроскопические тела. Объекты, которые доступны наблюдению человеком даже без применения специальных приборов, называют макроскопическими. В настоящее время диапазон объектов, имеющих макроскопические размеры, увеличился: к их числу относят даже невидимые человеку тела, движение которых подчиняется законам классической механики. Условно считают, что нижней границей макромира являются тела, размеры которых не меньше 10^{-8} м. Таким образом, макроскопическими телами можно считать как космические объекты звёзды, планеты и др., так и тела, окружающие человека на Земле, деревья, камни, животных, а также песчинки, пылинки и т. д.
- 2. Пространство и время. Наблюдая за движением различных тел падением камня со скалы, полётом стрелы, выпущенной из лука, парением птицы, бегом животного, течением реки, люди стали рассуждать о таких категориях, как пространство и время. Эти понятия, несмотря на кажущуюся их простоту, относятся к числу сложнейших философских категорий. В классической механике, согласно пониманию Ньютона, принято считать, что пространство «пустое вместилище» тел однородно и изотропно (т. е. его свойства одинаковы во всех точках и по всем направлениям), а время однородно: оно равномерно течёт в одном направлении от прошлого к будущему.

3. Тело отсчёта и система отсчёта. Из определения механического движения следует,

Для подготовки к ЕГЭ – рабочая тетрадь

- ✓ Принципиальное умение для получения высокого балла ЕГЭ – решение задач
- ✓ Рабочая тетрадь

 призвана отрабатывать
 на уроках умения,
 необходимые на ЕГЭ

- ✓ К каждой теме:
- 1. Основная теоретическая информация
- 2. Примеры решения задач
- 3. Задачи для самостоятельного решения

	Mana www. ron		1 01 01 mg	
001	ких сил взаи	жит за нить	шарик, наполненный гел сируются, если шарик н	ием. Действия ка аходится в состоя
	нии покоя?	-	Various distriction of the second	STANDARD STANDARD
	median norma	жер мыссоно	малючика, 5 сворение, с	изтороно Конда
OCAL	and remineral and		SCHOOL HOLDE BENEDALLY	TOM STRIES, HENTING
19.	между перво	й и второй си	цую трёх сил, по 200 Н г илой и между второй и тр одной плоскости.	аждая, если угль етьей силой равнь
	Дано:	Решени	ie: via = ^{d.} d	
		k a termina	вы жил этрудет иметь ил вы жил этрудет иметь ил	ы развийн ёго ди я развитер измеся
		M (4. p.,		- Carpare washing
		gira groroca)		Подставив'в при
	Ответ:	transfer per	the same with a time,	CACAMATA BUCALAN
20.	С каким уско	рением движ двигателей	кется при разбеге самолё составляет 90 кН?	г массой 60 т, если
		1	Решение:	
	Дано:	СИ	овине.	
	Дано:	СИ		
Ante	Дано:			- d yxdudwdolf " thirm onopoety anapres, pacesar
AME	Дано:	salar narria.	ов просмин усконных	- d valudwolf this exopour
AME I	Дано:	salar narria.	о и просман усковения прежение и ромуну	- , a valudwolf h dee okopoen h dee pecena

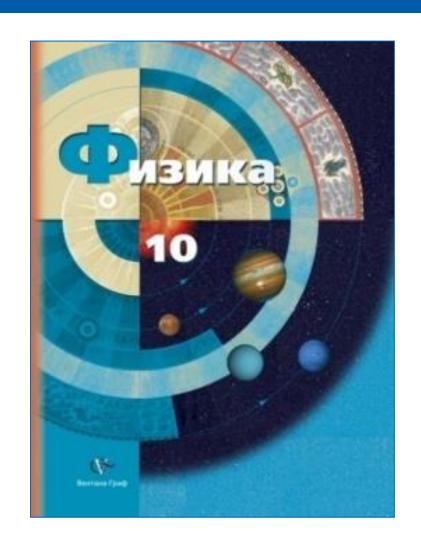
22

Для развития методологических умений – тетрадь для лабораторных работ



Методические пособия – помогают оптимально организовать урок

В свободном доступе на сайте http://www.drofa-ventana.ru/


УМК по физике А.В. Грачёва

10 – 11 класс Базовый и углублённый уровни

Учебник – для освоения физической теории

Оптимальный УМК для подготовки к ЕГЭ на высоком уровне:

- Систематизация знаний
- Улучшена подача традиционно сложных тем
- Единственный УМК с системой обучение решению задач всех уровней сложности

КИНЕМАТИКА

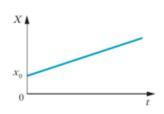
ТРАЕКТОРИЯ — линия, в каждой точке которой последовательно находилась, находится или будет находиться движущееся точечное тело (точка).

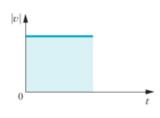
Скорость точечного тела в момент времени t:

$$\overrightarrow{v}\left(t
ight)=rac{\overrightarrow{r}\left(t+\Delta t
ight)-\overrightarrow{r}\left(t
ight)}{\Delta t}=rac{\Delta \overrightarrow{r}}{\Delta t}$$
, где $\Delta t
ightarrow 0$.

Ускорение точечного тела в момент времени t:

$$ec{a}\left(t
ight)=rac{ec{v}\left(t+\Delta t
ight)-ec{v}\left(t
ight)}{\Delta t}=rac{\Delta ec{v}}{\Delta t}$$
, где $\Delta t
ightarrow 0$.


РАВНОМЕРНОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ ВДОЛЬ ОСИ X


Закон движения:

Путь за время от 0 до t: $S = |x(t) - x_0| = |v_x| \cdot t$.

$$x(t) = x_0 + v_x \cdot t,$$

где $v_x = \text{const.}$

ИМПУЛЬС. ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА

Импульс материальной точки в ИСО:

$$\vec{p} = m \cdot \vec{v}.$$

Изменение импульса материальной точки в ИСО:

$$\Delta \vec{p} = \vec{F} \cdot \Delta t$$
.

где \vec{F} — сумма всех действующих на неё сил, Δt — время их действия.

Импульс системы материальных точек: $\vec{p}=\vec{p}_1+\vec{p}_2+...+\vec{p}_N.$

Изменение суммарного импульса системы материальных точек в ИСО:

$$\Delta \vec{p} = (\vec{F}_{1\,\mathrm{ex}} + \vec{F}_{2\,\mathrm{ex}} + \ldots + \vec{F}_{N\mathrm{ex}}) \cdot \Delta t,$$
 где $\vec{F}_{1\,\mathrm{ex}} + \vec{F}_{2\,\mathrm{ex}} + \ldots + \vec{F}_{N\mathrm{ex}} -$ сумма всех внешних сил.

Закон сохранения импульса

Если сумма всех внешних сил, действующих на тела системы, равна нулю, то импульс системы тел в ИСО не изменяется с течением времени (сохраняется).

Если
$$\vec{F}_{1\,\mathrm{ex}}$$
 + $\vec{F}_{2\,\mathrm{ex}}$ + ... + $\vec{F}_{N\,\mathrm{ex}}$ = 0, то $\Delta \vec{p}$ = 0.

Закон сохранения проекции импульса

Если проекция на координатную ось ИСО суммы всех внешних сил, действующих на тела системы, равна нулю, то проекция импульса системы тел на эту ось не изменяется с течением времени (сохраняется).

Центром масс системы, состоящей из N материальных точек, называют точку, радиус-вектор которой равен отношению суммы произведений массы каждой точки на её радиус-вектор к сумме масс этих точек:

$$\vec{r}_{_{\text{TLM}}} = \frac{m_{_{1}} \cdot \vec{r_{_{1}}} + m_{_{2}} \cdot \vec{r_{_{2}}} + \dots + m_{_{N}} \cdot \vec{r_{_{N}}}}{m_{_{1}} + m_{_{2}} + \dots + m_{_{N}}}.$$

Теорема о движении центра масс системы

Ускорение \vec{a} центра масс системы, состоящей из N материальных точек, в ИСО равно отношению суммы всех внешних сил, действующих на точки этой системы, к сумме масс всех её точек:

$$\vec{a}_{_{\text{IIM}}} = \frac{\vec{F}_{1\,\,\text{ex}} + \vec{F}_{2\,\,\text{ex}} + \dots + \vec{F}_{N\,\text{ex}}}{m_1 + m_2 + \dots + m_N}.$$

Глава 2. Магнитное поле

Подставив (1) в (2), получаем:

$$F_{21} = \frac{\mu_0 \cdot I_1 \cdot I_2 \cdot l}{2\pi \cdot r}.$$
 (3)

Аналогичным образом можно показать, что формула для расчёта модуля силы Ампера \vec{F}_{12} , действующей на участок длиной l первого провода со стороны магнитного поля, созданного током I_2 , будет иметь такой же вид:

$$F_{12} = \frac{\mu_0 \cdot I_1 \cdot I_2 \cdot l}{2\pi \cdot r}.$$
 (3')

Обратим внимание на то, что равенство модулей сил \vec{F}_{12} и \vec{F}_{21} , как и противоположность их направлений, никоим образом не следует из третьего закона Ньютона. Действительно, сила \vec{F}_{12} действует на участок провода с током I_1 со стороны всего провода с током I_2 . В свою очередь, сила \vec{F}_{21} действует не на весь провод с током I_2 , а только на участок этого провода. При этом она действует не со стороны участка провода с током I_1 , а со стороны всего этого провода. Таким образом, силы \vec{F}_{12} и \vec{F}_{21} , действующие на участки проводов, не являются силами взаимодействия этих участков.

Разъяснение сложных вопросов

Классификация задач

Алгоритмы решения задач

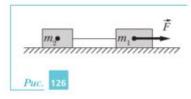
Упражнения

- 1_ На горизонтальной крышке стола лежит учебник массой m = 0.5 кг. В некоторый момент времени на него начинает действовать горизонтально направленная сила F. В результате учебник начинает двигаться поступательно с ускорением, модуль которого равен $a = 0.5 \text{ м/c}^2$. Определите модуль силы F, если коэффициент трения µ между учебником и поверхностью стола равен 0,3.
- *2 Как изменится ответ в задаче 1, если сила F, действующая на учебник, будет направлена не горизонтально, а под углом 30° к горизонту: а) вверх; б) вниз?
- **3** По плоскости, образующей с горизонтом угол $\alpha = 60^{\circ}$, соскальзывает вниз брусок, двигаясь поступательно. Найдите ускорение бруска, если известно, что коэффициент его трения о плоскость $\mu = 0, 1$.

§ 22 Решение задач о движении взаимодействующих тел

При решении задач о движении взаимодействующих тел используют законы Ньютона: второй закон Ньютона для каждого из тел и третий закон Ньютона для каждой пары взаимодействующих тел. Все подобные задачи решают по одной схеме. Рассмотрим примеры решения таких задач.

Задача 1


На льду озера лежит доска массой M. На доске стоит человек массой m(рис. 122). Коэффициент трения между доской и льдом равен µ. Определите минимальное по модулю относительно поверхности льда ускорение, с которым должен начать двигаться по доске человек, чтобы доска начала скользить по льду.

Решение.

- Шаг 0. Будем считать человека и доску материальными точками.
- **Шаг 1.** Инерциальную систему отсчёта XY свяжем с поверхностью льда. Ось X направим горизонтально в направлении ускорения человека. Ось Y направим вертикально вверх.
- **Шаг 2.** Изобразим силы, действующие на человека: силу тяжести $m \cdot \vec{g}$, силу реакции опоры \vec{N}_1 и силу трения $\vec{F}_{\text{то 1}}$ со стороны доски, которая позволяет человеку ускориться (рис. 123).

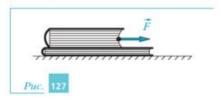
Алгоритмы решения задач высокого уровня сложности

с другом лёгкой нерастяжимой нитью, которая натянута. В некоторый момент времени бруски отпускают. Одновременно на первый брусок начинает действовать сила Fтак, как показано на рис. 126.

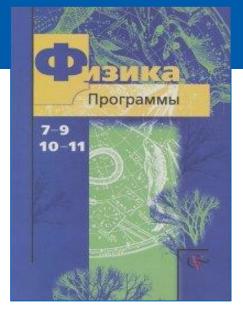
В результате бруски начинают поступательно двигаться в направлении действия этой силы. Определите модуль силы натяжения нити, действующей на второй брусок, если модуль силы \vec{F} равен 6 Н. Получите ответ в общем виде и проведите его анализ.

Через неподвижный относительно Земли блок перекинута гладкая лёгкая нерастяжимая нить, к концам которой прикрепляют грузы с одинаковыми массами M. Удерживая грузы, на один из них кладут грузик массой m. Грузы одновременно отпускают. Определите, с какой силой будет действовать грузик на груз под ним после того, как вся система придёт в движение.

3_ Решите полностью задачу 3 из этого параграфа.


Для углублённого уровня

Решение задач, требующих анализа возможных вариантов движения и взаимодействия тел


Проведём эксперимент. Положим на парту рабочую тетрадь, а сверху – учебник физики (рис. 127). Аккуратно потянем учебник с малой силой в горизонтальном направлении. Тетрадь начнёт перемещаться вместе с учебником. Почему? Дело в том, что на тетрадь со стороны учебника будет действовать сила трения, которая «потянет» тетрадь вслед за учебником. Если вы будете тянуть учебник с незначительной по модулю силой, то действующая на тетрадь со стороны учебника сила трения будет силой трения покоя. Её будет достаточно для того, чтобы тетрадь двигалась вместе с учебником. Однако если вы подействуете на учебник с большой по моду-

лю силой, то учебник соскользнёт с тетради, хотя она тоже будет двигаться по парте.

Исследуем, как будут двигаться и взаимодействовать тела в подобной ситуации. Для этого решим следующую задачу.

Состав УМК

 ✓ Программы – для организации образовательного процесса

✓ Рабочие тетради — для подготовки к ЕГЭ в рамках урочной деятельности

• Алгоритмы решения задач

§ 21 Решение задач о движении тела под действием нескольких сил

1. На горизонтальной поверхности неподвижного относительно Земли стола лежит брусок массой m=1 кг. В некоторый момент времени на брусок начинает действовать сила, направленная под углом $\alpha=60^\circ$ к горизонту, модуль которой F=10 Н. В результате брусок начинает двигаться поступательно. Определите ускорение бруска, если коэффициент трения бруска о поверхность $\mu=0,2$.

	of morning
* (2 - A. 2) II.	· .
Шаг 1. Выбор ИСО.	The state of the s
За тело отсчёта примем	Ось Х направи
F - Mary is the constraint of suffering a surple of the	, а ось Y направи
Часы включим в момент	- 1 1111 x9-1
Шаг 2. Изображение осей выбранной системы	ы координат и сил, дейс
	ы координат и сил, дейс
	ы координат и сил, дейс
	ы координат и сил, дейс
ующих на брусок.	
 Шаг 3. Запись проекций сил, действующих на на ось X 	

• Алгоритмы решения задач высокого уровня сложности

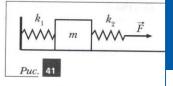
Решение задач, требующих анализа возможных вариантов движения и взаимодействия тел

Решение ряда задач, в условиях которых физические величины заданы в общем виде, требует анализа возможных ситуаций при составлении системы уравнений. Например, поскольку модуль силы сухого трения покоя может принимать любые значения от 0 до $F_{\rm max}$ (см. § 20 учебника), то может быть заранее неизвестно, покоится тело или движется. Кроме того, не всегда может быть определено направление движения тела, а так как сила трения покоя направлена всегда против направления возможного движения, возникает неоднозначность в определении направления и модуля силы трения, следовательно, и суммы сил, фигурирующей во втором законе Ньютона. При решении таких задач, если не заданы числовые данные, следует рассматривать все возможные варианты состояния тел системы (покой, движение с постоянной скоростью, ускоренное движение), а также возможные направления движения. Этот подход принципиально отличается от случая, когда имеющиеся числовые данные позволяют выбрать правильное решение, не рассматривая все возможные варианты.

Используя пример решения подобных задач (см. § 23 учебника), решите следующие задачи.

1. Доска массой M лежит на гладкой горизонтальной плоскости, неподвижной относительно Земли. На доске лежит брусок массой m. Коэффициент трения между бруском и доской равен μ . В некоторый момент времени на доску начинают действовать направленной горизонтально силой, модуль которой равен F. В результате доска и брусок начинают двигаться поступательно. Определите ускорения доски \vec{a}_{a} и бруска \vec{a}_{b} относительно Земли.

Решение.


Шаг 0. Выбор модели.

Шаг 1. Выбор ИСО.

Шаг 2. Изготовление рисунка с изображением выбранной ИСО, взаимодействующих тел, действующих сил.

• Задачи по всем темам

9. К лежащему неподвижно на гладком горизонтальном полу кубику массой m=1 кг прикреплены две лёгкие пружины, как показано на рис. 41. Одним концом первая пружина жёсткостью $k_1=200~{\rm H/m}$ прикреплена к вертикальной стене, а к свободному концу второй пружины жёсткободному концу второй пружины жёстко-

стью $k_2=200$ Н/м приложена направленная горизонтально сила \vec{F} . При это удлинение первой пружины равно $\Delta l_1=4$ см. Определите модуль силы \vec{F} и удлинение второй пружины.

Решение.

Ответ:		

10. К свободному концу прикреплённой к потолку лёгкой пружины подвесили груз массой $m_1=0.1$ кг. В результате этого длина пружины увеличилась на $\Delta l_1=2.5$ см. Определите удлинение этой пружины после подвешивания к первому грузу ещё одного груза массой $m_2=0.2$ кг.

Решение.

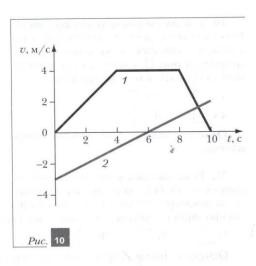
 10

•Задачи повышенного уровня сложности 10^* . Сколько времени займёт рейс лодки по прямой от пристани A до пристани B (на другом берегу вниз по течению) и обратно (так же по прямой), если модуль скорости течения постоянен и равен u? Модуль скорости луки этносительно воды равен v; расстояние вдоль берега от пристани A до точки, расположенной напротив пристани B, равно L; ширина реки -d.

Решение.

Ответ:

11 На противоположных берегах прямолинейного участка реки насодятся две пристани A и B, расстояние между которыми S=130 м, а прямая AB составляет с берегом угол $\alpha=60^\circ$. Модуль скорости воды по всей ширине реки одинаков и равен u=0,1 м/с. С пристаней одновременно отплыли два катера, они двигались всё время по прямой AB с постоянными относительно воды скоростями, модули которых равны, и встретились через t=36 с. Определите модуль v скорости катеров относительно скорости воды.


Решение.

2

• Задачи с графиками

•Задачи с выбором нескольких ответов

- 7. Начальные координаты тел 1 и 2 из упражнения 6 равны соответственно –10 м и 10 м. Определите координаты этих тел в моменты времени: а) 6 с; б) 8 с; в) 10 с.

8. Закон движения точечного тела вдоль оси X в СИ имеет вид: $x=2+12t-2t^2$. Скорость тела обратится в нуль в момент времени t, равный

2 c 3 c 4 c 6 c

Отметьте знаком ✓ правильное утверждение.

9. Тело, совершившее свободное падение с некоторой высоты с нулевой начальной скоростью, при ударе о землю имело скорость 20 м/c. Время падения тела примерно равно

1 c 2 c 3 c 4 c

Отметьте знаком ✓ правильное утверждение.

35 .

•Задачи на соответствие

> 11. Установите соответствие между физи тером их изменения в случае увеличения ра заряженного плоского конденсатора.

Физическая величина

- А) Заряд конденсатора
- Б) Электрическая ёмкость
- В) Напряжение между обкладками конденсатора

Заполните таблицу.

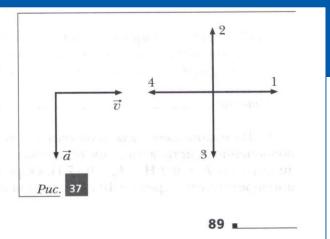
iniqual to see As in some	and the second	Б	977	В	
CANADA TO SECURIO SE	2400	1.191	ALICE MAL	Part William	1100
	Coar Cales v		NAME OF BRIDE		

10. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (q – заряд, C – ёмкость, U – напряжение между пластинами конденсатора; d – расстояние между пластинами плоского конденсатора, S — площадь пластины конденсатора, ϵ — диэлектрическая проницаемость, E — модуль напряжённости электрического поля). К каждой позиции столбца с физическими величинами подберите соответствующие позиции столбца с формулами и запишите в таблицу выбранные цифры под соответствующими буквами.

Физические величины

- А) Ёмкость конденсатора
- Б) Энергия заряженного конденсатора
- В) Объёмная плотность энергии электрического поля

Формулы

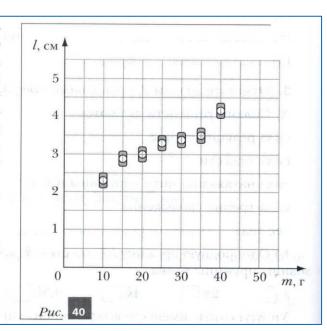

Характер изменения физической величины

- 1) Увеличится
- 2) Уменьшится
- 3) Не изменится

W VISPT 1		yı	В	0.01
on mich	ti Kiti	47	1- 11/41	

• Задачи на определение направления 5. Слева на рис. 37 показаны векторы скорости \vec{v} и ускорения \vec{a} точечного тела в ИСО. Направление суммы всех действующих на это тело сил показывает изображённый справа вектор

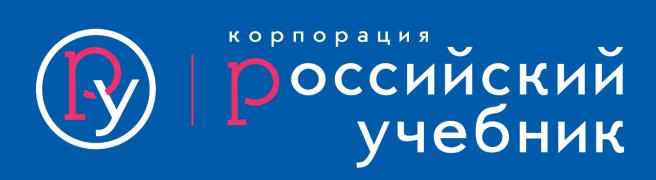
- 1) 1
- 3) 3
- 2) 2 4) 4


• Развитие методологических умений

5. На рис. 40 показана зависимость длины l пружины от массы m груза, лежащего в чашке, подвешенной на этой пружине. Вся система покоится относительно Земли. С учётом погрешности измерений $(\Delta m = \pm 1 \text{ г, } \Delta l = \pm 0.2 \text{ см})$ длина пружины при пустой чашке весов примерно равна

- 1) 1,5 см
- 2) 2 cm
- 3) 2,5 см
- 4) 3 cm

Отметьте знаком \times правильный вариант ответа.


- 1)
- 2)
- 3)
- 4)

• Вопросы, требующие развёрнутого ответа

2. Два автомобиля движутся по прямолинейной дороге. При этом модуль скорости центра колеса у первого автомобиля меньше, а у второго автомобиля — больше модуля скорости верхней точки этого же колеса, обусловленной вращением. Какой из автомобилей будет замедляться, а какой ускоряться? Ответ поясните.

№ 8. Посмотрите в справочнике значения удельных теплоёмкостей разных жидкостей. Как вы думаете, почему в качестве теплоносителя в системах отопления обычно используют воду?

Методическая служба по физике:

Опаловский Владимир Александрович

Пешкова Анна Вячеславовна

Opalovskiy.VA@rosuchebnik.ru

Peshkova.AV@rosuchebnik.ru

123308, Москва, ул. Зорге, д. 1 (495) 795-0535, 795-0545, info@rosuchebnik.ru rosuchebnik.ru росучебник.рф

Нужна методическая поддержка?

Методический центр 8-800-2000-550 (звонок бесплатный), metod@rosuchebnik.ru

Хотите купить?

Официальный интернет-магазин учебной литературы book24.ru

Отдел продаж sales@rosuchebnik.ru

Магазин электронных учебников lecta.ru

Хотите продолжить общение?

- youtube.com/user/drofapublishing B vk.com/ros.uchebnik
- - 👔 www.fb.com/rosuchebnik 🛛 🙉 www.ok.ru/rosuchebnik

Остались вопросы?

Служба поддержки 8-800-700-64-83 (звонок бесплатный), help@rosuchebnik.ru