

ЕГЭ по химии: гидролиз

Молчанова Галина Николаевна К.х.н. учитель химии МОУ Котеревская СОШ

№ задания в работе	Проверяемые элементы содержания	Уровень сложности задания	Макс. балл
8	Характерные химические свойства неорганических веществ:	П	2
9	Характерные химические свойства неорганических веществ:	П	2
17	Характерные химические кислородсодержащих органических соединений. Важнейшие способы получения кислородсодержащих органических соединений	П	2
23	Гидролиз солей. Среда водных растворов	П	2
29	Расчёты массы вещества или объема газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ	Б	1
32	Реакции, подтверждающие взаимосвязь различных классов неорганических веществ	В	4
33	Реакции, подтверждающие взаимосвязь органических соединений	В	5
34	Расчёты с использованием понятия «массовая доля вещества в растворе».	В	4
35	Установление молекулярной и структурной формулы вещества	В	3

Гидролиз

(от др.-греч. ὕδωρ «вода» + λύσις «разложение») — разложение водой.

I. Гидролиз неорганических веществ

1) Полный гидролиз бинарных соединений

а) соединения металла с неметаллом

$$M^{+}$$
— $Hem^{-} + H^{+}$ — $OH^{-} \rightarrow M$ — $OH + H$ — Hem

$$Al_2S_3 + 6H_2O = 2Al(OH)_3 + 3H_2S \uparrow$$
 - сероводород

$$Al_4C_3 + 12H_2O = 4Al(OH)_3 + 3CH_4 \uparrow$$
 - метан

$$CaC_2 + 2H_2O = Ca(OH)_2 + C_2H_2 \uparrow$$
 - ацетилен

$$Ca_3P_2 + 6H_2O = 3Ca(OH)_2 + 2PH_3 \uparrow$$
 - фосфин

$$Ca_3N_2 + 6H_2O = 3Ca(OH)_2 + 2NH_3 \uparrow$$
 - аммиак

$$Mg_2Si + 4H_2O = 2Mg(OH)_2 + SiH_4 \uparrow$$
 - силан

$$KH + H_2O = KOH + H_2 \uparrow$$
 - водород

$$Al_2S_3 + 6HCl = 2AlCl_3 + 3H_2S \uparrow$$

$$Al_4C_3 + 12HCl = 4AlCl_3 + 3CH_4 \uparrow$$

$$CaC_2 + 2HCl = CaCl_2 + C_2H_2 \uparrow$$

$$Ca_3P_2 + 6HCl = 3CaCl_2 + 2PH_3 \uparrow$$

$$Ca_3N_2 + 8HCl = 3CaCl_2 + 2NH_4Cl$$

$$Mg_2Si + 4HCl = 2MgCl_2 + SiH_4 \uparrow$$

$$KH + HCl = KCl + H_2 \uparrow$$

При растворении в воде карбида кальция выделилось 5,6 л (н.у.) газа. Какова масса взятого карбида кальция? (Запишите число с точностью до целых.)

\bigcirc	
Ответ:	Г
OIDCI.	T

б) соединения неметалла с неметаллом

$$PCl5 + 4H2O = H3PO4 + 5HCl$$
$$PCl5 + 8KOH = K3PO4 + 5KCl$$

2) Обратимый гидролиз солей

No	Чем образо	ована соль	Пример	Гидролиз по	Среда
					раствора
1	слабой	сильным	Na ₂ CO ₃	OHHOHA	щелочная
	кислотой	основанием		аниону	
2	сильной	слабым	MgSO ₄	IAOTHOUS	кислая
	кислотой	основанием		катиону	
3	слабой	слабым	$(NH_4)_2S$	катиону и	
	кислотой	основанием		аниону	
4	сильной	сильным	Na ₂ SO ₄	не	нейтральная
	кислотой	основанием		подвергается	
				гидролизу	

ТАБЛИЦА РАСТВОРИМОСТИ ВЕЩЕСТВ В ВОДЕ ПРИ 20 °C

	H*	Li*	K*	Na*	NH*	Ba2*	Ca2+	Mg2+	Sr2+	Al3+	Cr3+	Fe2+	Fe3*	Ni2+	Co2+	Mn ²⁺	Zn2*	Ag*	Hg2+	Pb2+	Sn2+	Cu2+
OH-		P	P	P	P	P	M	Н	M	H	Н	H	Н	Н	Н	Н	Н	-	-	H	H	Н
F-	P	M	P	P	P	M	Н	Н	Н	M	H	Н	Н	P	P	P	P	P	-	H	P	P
CI"	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Н	P	M	P	P
Br ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	H	M	M	P	P
Γ	P	Р	P	P	P	P	P	P	P	P	?	P	?	P	P	P	P	H	H	H	M	?
S2-	P	P	P	P	P	-	-	-	Н	_	-	Н	-	Н	Н	Н	Н	Н	Н	H	Н	Н
HS"	P	P	P	P	P	P	P	P	P	?	?	?	?	?	Н	?	?	?	?	?	?	?
SO ₃ ²⁻	P	P	P	P	P	Н	Н	M	H	?	-	Н	?	Н	H	?	M	H	H	Н	?	?
HSO ₃	P	?	P	P	P	P	P	P	P	?	?	?	?	?	?	?	?	?	?	?	?	?
SO ₄ ²⁻	P	P	P	P	P	Н	M	P	Н	P	P	P	P	P	P	P	P	M	-	Н	P	P
HSO ₄	P	P	P	P	P	?	?	?	-	?	?	?	?	?	?	?	?	?	?	Н	?	?
NO ₃	Р	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	-	P
NO ₂	P	P	P	P	P	P	P	P	P	?	?	?	?	P	M	?	?	M	?	?	?	?
PO ₄ ³⁻	P	Н	P	P	-	Н	H	H	H	Н	Н	Н	Н	Н	Н	H	Н	H	H	H	H	Н
HPO ₄ ²⁻	P	?	P	P	P	Н	H	M	Н	?	?	Н	?	?	?	Н	?	?	?	M	Н	?
H ₂ PO ₄	P	P	P	P	P	P	P	P	P	?	?	P	?	?	?	P	P	P	?	-	?	?
CO3-	P	P	P	P	P	Н	Н	Н	Н	?	?	Н	?	Н	Н	Н	Н	H	?	H	?	Н
HCO ₃	P	P	P	P	P	P	P	P	P	?	?	P	?	?	?	?	?	?	?	P	?	?
CH ₃ COO ⁻	Р	P	P	P	P	P	P	P	P	-	P	P	-	P	P	Р	P	P	P	P	-	P
SiO ₃ ²⁻	Н	Н	P	P	?	Н	Н	H	Н	?	?	Н	?	?	?	Н	Н	?	?	H	?	?

P - растворяется (> 1 г на 100 г H₂O) М

- мало растворяется (от 0,1 г до 1 г 100 г H₂O)

H - не растворяется (< 0,1 г в 100 г H₂O)

в водной среде разлагается

?

- нет достоверных сведений о существовании соединения

Растворимость солей, кислот и оснований в воде

Ионы	$\mathrm{H}^{\scriptscriptstyle +}$	K ⁺	Na ⁺	Ag ⁺	Ba ²⁺	Ca ²⁺	Mg ²⁺	Zn ²⁺	Cu ²⁺	Pb ²⁺	Fe ³⁺	Al ³⁺
OH-		P	P	_	P	M	M	Н	Н	M	Н	Н
NO_3^-	P	P	P	P	P	P	P	P	P	P	P	P
Cl ⁻	P	P	P	Н	P	P	P	P	P	M	P	P
S_2^-	P	P	P	Н	P	_	_	Н	Н	Н	Н	_
SO ₄ ²⁻	P	P	P	M	Н	M	P	P	P	M	P	P
CO ₃ ²⁻	P	P	P	M	Н	Н	M	Н	_	Н	-	_
SiO ₃ ²⁻	Н	P	P	_	Н	Н	Н	Н	_	Н	-	_
PO ₄ ³⁻	P	P	P	Н	Н	Н	Н	Н	Н	Н	Н	Н
CH ₃ COO ⁻	P	P	P	P	P	P	P	P	P	P	P	P

 ${
m P}$ — растворимые; ${
m M}$ — малорастворимые; ${
m H}$ — нерастворимые; — разлагаются под водой или не существуют

КАТИОНЫ

АНИОНЫ	H.	K.	Ba'	Ca*	Na	NH,	Mg"	AI"	Mn'	Zn'	Cr"	Fe"	Fe'
OH-		P	P	M	P	P	M	н	н	н	н	н	н
NO,	P	P	P	P	P	P	P	P	P	P	P	P	P
SO ₄ -	P	P	н	M	P	P	P	P	P	P	P	P	P
1-	P	P	P	P	P	P	P	P	P	P	P	P	_
Br ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P
CI-	P	P	P	P	P	P	P	P	P	P	P	P	P
SO3-	P	P	M	M	P	P	M	-	н	M	-	M	_
PO ₄	P	P	н	н	P	-	M	н	н	н	н	н	н
CH,COO	P	P	P	P	P	P	P	M	P	P	P	P	P
co;-	PI	P	н	н	P	P	M	-	н	н	-	н	_
51-	P	P	-	P	P	P	-	_	н	н	_	н	н
SiO3	н	P	Н	н	P	_	н	-	-	н	_	н	_

Среда ростюра

spinoway.

- ней рожина

Р - распырным (балым 1 г м М могориялирими (0,1 - 1 Н - эерестверный (менця 0, — - разлетанта в водения не Р1 - разлетанта с вырячения

Установите соответствие между названием соли и отношением этой соли к гидролизу: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

НАЗВАНИЕ СОЛИ

ОТНОШЕНИЕ К ГИДРОЛИЗУ

- А) нитрат цинка
- Б) фосфат натрия
- В) хлорид натрия
- Г) сульфид натрия

- 1) гидролиз по катиону
- 2) гидролизу не подвергается
- 3) гидролиз по аниону
- 4) гидролиз по катиону и аниону

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

A	Б	В	Γ
1	8	2	3

Установите соответствие между названием соли и средой водного раствора этой соли: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

НАЗВАНИЕ СОЛИ

СРЕДА РАСТВОРА

А) нитрат бария

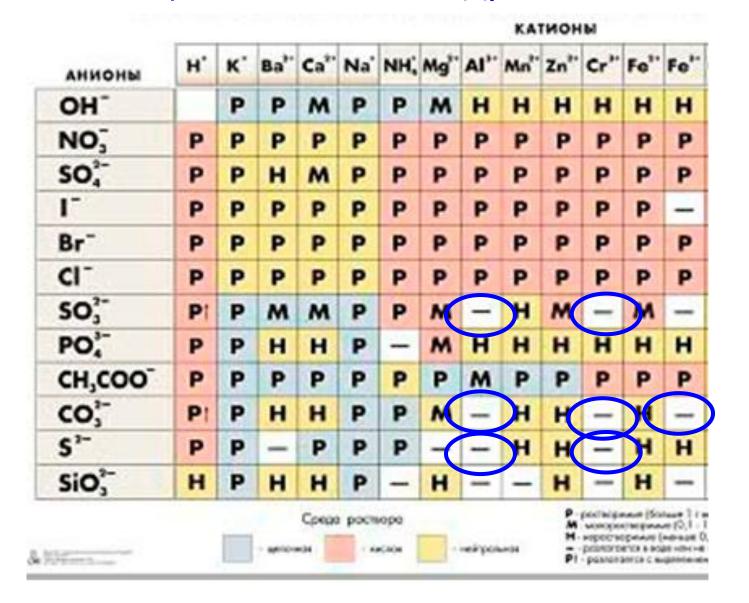
1) кислая

Б) сульфат калия

2) щелочная

В) фторид цезия

3) нейтральная


Г) гидрокарбонат натрия

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

A	Б	В	Γ
3	3	2	2

3) Совместный гидролиз

Al³⁺, Cr³⁺ и CO₃²⁻, SO₃²⁻, S²⁻

Fe³⁺ и CO₃²⁻

$$Al_{2}(SO_{4})_{3} + 3K_{2}S + 4H_{2}O = 2Al(OH)_{3} + 3H_{3}S + 3K_{2}SO_{4}$$

$$Cr_{2}(SO_{4})_{3} + 3K_{2}SO_{3} + 3H_{2}O = 2Cr(OH)_{3} + 3SO_{2} + 3K_{2}SO_{4}$$

$$2Fe(NO_{3})_{3} + 3K_{2}CO_{3} + 3H_{2}O = 2Fe(OH)_{3} + 3CO_{2} + 6KNO_{3}$$

9

Установите соответствие между исходными веществами, вступающими в реакцию, и продуктами(-ом) этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ИСХОДНЫЕ ВЕЩЕСТВА

- A) Al₂O₃ и KOH (p-p)
- Б) AlCl₃ и Na₂S (p-p)
- B) AlCl₃ и NH₃ (p-p)
- Г) Al и KOH (p-p)

ПРОДУКТ(Ы) РЕАКЦИИ

- 1) $K[Al(OH)_4]$
- 2) K[Al(OH)₄] и H₂
- 3) AlN и HCl
- 4) Al(OH)₃, H₂S и NaCl
- 5) Al(OH)₃ и NH₄Cl
- 6) Al₂S₃ и NaCl

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

A	Б	В	Γ
	4		

Натрий прореагировал с водой. Через образовавшийся раствор пропустили оксид серы(IV) до образования средней соли. Полученную при этом соль поместили в раствор, содержащий дихромат натрия и серную кислоту. Образовавшееся при этом соединение хрома вступило в реакцию с раствором карбоната натрия. Напишите уравнения четырёх описанных реакций.

- 1) $2Na + 2H_2O = 2NaOH + H_2$
- 2) $SO_2 + 2NaOH = Na_2SO_3 + H_2O$
- 3) $3Na_2SO_3 + Na_2Cr_2O_7 + 4H_2SO_4 = 4Na_2SO_4 + Cr_2(SO_4)_3 + 4H_2O_4$
- 4) $Cr_2(SO_4)_3 + 3Na_2CO_3 + 3H_2O = 2Cr(OH)_3 + 3CO_2 + 3Na_2SO_4$

II. Гидролиз органических веществ

1) Гидролиз галогенсодержащих углеводородов

Гидролизу подвергаются только хлор-, бром- и иодсодержащие углеводороды, причем скорость гидролиза увеличивается в ряду R-Cl < R-Br < R-I.

Моногалогеналканы при обратимо реагируют с водой, при этом образуются спирты:

$$CH_3CH_2Cl + H_2O \stackrel{t^o}{\longleftarrow} CH_3CH_2OH + HCl.$$

Для увеличения выхода спиртов выделяющийся галогеноводород связывают щелочью. Процесс щелочного гидролиза галогеналканов протекает необратимо:

$$CH_3CH_2Cl + NaOH \xrightarrow{H_2O,t^o} CH_3CH_2OH + NaCl$$

Щелочной гидролиз *дигалогеналканов*, в которых атомы галогена находятся у разных атомов углерода, приводит к образованию двухатомных спиртов.

$$CH_{3}-CH-CH_{2} + 2NaOH \xrightarrow{H_{2}O, t^{o}}$$

$$Br \quad Br$$

$$\longrightarrow CH_{3}-CH-CH_{2} + 2NaBr$$

$$OH \quad OH$$

Если атомы галогена стоят у одного атома углерода (геминально замещенные дигалогенаканы), то в процессе щелочного гидролиза этих соединений образуются карбонильные соединения. В том случае, если атомы галогена стоят у первичного атома углерода, образуются альдегиды:

$$CH_3-CH_2-CH_1 + 2NaOH \xrightarrow{H_2O, t^o}$$

$$Br$$

$$Br$$

$$Br$$

$$CH_3-CH_2-C \xrightarrow{O} + 2NaBr + H_2O$$

Если два атома галогена присоединены ко вторичному атому углерода, то продуктами гидролиза являются кетоны:

$$CH_{3} - \overset{Br}{C} - CH_{3} + 2NaOH \xrightarrow{H_{2}O, t^{o}}$$

$$\rightarrow CH_{3} - \overset{O}{C} - CH_{3} + 2NaBr + H_{2}O$$

При щелочном гидролизе соединений, содержащих *три атома галогена* при одном атоме углерода образуются соли карбоновых кислот:

$$CCl_3 + 4NaOH \xrightarrow{H_2O, t^o}$$

$$ONa$$

2) Гидролиз алкоголятов

Алкоголяты щелочных и щёлочноземельных металлов подвергаются необратимому гидролизу при взаимодействии с водой:

$$CH_3$$
- CH_2 -O-Na + H_2 O \to CH_3 - CH_2 -O-H + NaOH
Этилат натрия

3) Гидролиз сложных эфиров

Гидролиз сложных эфиров проводят как в присутствии щелочей, так и в присутствии кислот. Кислотный гидролиз сложных эфиров - процесс обратимый. Продуктами гидролиза являются соответствующие кислота и спирт.

$$CH_3C$$
 O
 CH_2CH_3
 $+ H_2O$
 H^+, t^O
 \rightarrow
 CH_3C
 O
 $+ CH_3CH_2OH$
 OH

Как и в случае галогеналканов, проведение реакции гидролиза в присутствии щелочи делает этот процесс необратимым. Продуктами гидролиза в этом случае являются соль карбоновой кислоты и соответствующий спирт.

$$CH_3C$$
 O
 O
 CH_2CH_3
 $+ NaOH$
 H_2O, t^O
 O
 CH_3C
 O
 $+ CH_3CH_2OH$
 O
 O

Как и в случае галогеналканов, проведение реакции гидролиза в присутствии щелочи делает этот процесс необратимым. Продуктами гидролиза в этом случае являются соль карбоновой кислоты и соответствующий спирт.

Продуктами щелочного гидролиза фениловых эфиров карбоновых кислот являются две соли: соль карбоновой кислоты и соответствующий фенолят.

$$O-C-CH_3 + 2NaOH \longrightarrow ONa + CH_3COONa + H_2O$$

Сложными эфирами глицерина и высших карбоновых кислот являются экиры. Жиры также подвергаются гидролизу. Гидролиз может проходить в присутствии кислот или ферментов. Продуктами гидролиза в этом случае являются глицерин и высшие кислоты:

$$\begin{array}{c} O \\ CH_{2}-O-CC_{17}H_{35} \\ CH-O-C(O)C_{17}H_{35} \\ CH_{2}-O-CC_{17}H_{35} \\ O \end{array} + 3H_{2}O \xrightarrow{H^{+}} \\ CH_{2}-O-CC_{17}H_{35} \\ O \\ \\ \begin{array}{c} CH_{2}-OH \\ O \\ \end{array} + 3HOCC_{17}H_{35} \\ CH_{2}-OH \end{array}$$

Если же проводить гидролиз жиров в присутствии щелочи, то продуктами реакции будут глицерин и соли жирных карбоновых кислот,

называемые мыла.

а́а.

$$CH_2-O-CC_{17}H_{35}$$
 $CH-O-C(O)C_{17}H_{35} + 3NaOH$
 $CH_2-O-CC_{17}H_{35}$
 $CH_2-O-CC_{17}H_{35}$
 $CH_2-O-CC_{17}H_{35}$
 CH_2-OH
 CH_2-OH
 CH_2-OH
 CH_2-OH
 CH_2-OH

По аналогии с гидролизом жиров, процесс щелочного гидролиза всех сложных эфиров называют *омылением*.

5) Гидролиз пептидов

Гидролиз пептидов может быть кислотным и щелочным, а также может протекать под действием ферментов. В кислой и щелочной среде образуются соли аминокислот.

Рассмотрим гидролиз дипептида, образованного двумя остатками валина - природной α-аминокислоты. При его гидролизе в присутствии соляной кислоты образуется только одна соль — хлоргидрат валина:

Продуктом гидролиза этого же дипептида в присутствии гидроксида натрия является только натриевая соль валина:

$$CH_{3}-CH-CH-C-NH-CH-C-OH + 2NaOH \longrightarrow$$

$$CH_{3}NH_{2} CH_{3}-CH$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}-CH-CH-C-ONa + H_{2}O$$

$$CH_{3}NH_{2}$$

Из предложенного перечня выберите два вещества, которые образуются при гидролизе этилового эфира 2-аминопропановой кислоты, если гидролиз протекает под действием щёлочи.

- 1) CH₃-CH₂-OH
- 2) NH₂-CH(CH₃)-COONa
- 3) NH₂-CH(CH₃)-COOH
- 4) CH₃-CH₂-COONa
- 5) CH₃-CH₂-ONa

Запишите в поле ответа номера выбранных веществ.

Ответ: **1 2**

Установите соответствие между схемой реакции и веществом X, принимающим в ней участие: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИ

A)
$$X \xrightarrow{t^{\circ}} CH_3C(O)CH_3$$

$$E) X \xrightarrow{CuO, t^{\circ}} CH_3C(O)CH_3$$

B)
$$X \xrightarrow{KMnO_4(H^+)} CH_3C(O)CH_3$$

 $\Gamma) X \xrightarrow{NaOH (H_2O)} CH_3C(O)CH_3$

$$\Gamma$$
) X $\xrightarrow{\text{NaOH (H}_2\text{O})}$ CH₃C(O)CH₃

ВЕЩЕСТВО Х

- 1) ацетат кальция
- 2) формиат натрия
- 3) пропионат бария
- 4) 2,2-дихлорпропан
- 5) пропанол-2
- 6) пропанол-1

Запишите в таблицу выбранные цифры под соответствующими буквами.

	A	Б	В	Γ
Ответ:				4

Из предложенного перечня выберите два типа реакций, к которым можно отнести кислотный гидролиз изопропилацетата.

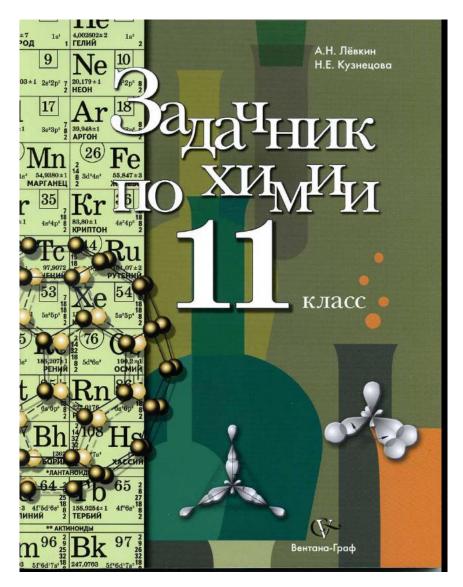
- 1) гидратации
- 2) окисления
- 3) отщепления
- 4) каталитическая
- 5) обратимая

Запишите в поле ответа номера выбранных типов реакций.

Otbet: 4 5

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

ацетилен
$$\xrightarrow{C_{(aкт.)}, t^{\circ}} X_1 \xrightarrow{CH_3Cl, AlCl_3} X_2 \longrightarrow \xrightarrow{U36. KOH, t^{\circ}} X_3 \longrightarrow$$
этилбензоат


4)
$$CCl_3 + 4KOH_{(водн.)}$$
 t^o $COOK + 3KC1 + 2H_2O$

При сжигании образца органического вещества массой 1,85 г получено 1,68 л (н.у.) углекислого газа и 1,35 г воды.

Данное вещество подвергается гидролизу в присутствии серной кислоты; один из продуктов гидролиза вступает в реакцию «серебряного зеркала».

$$C_3H_6O_2$$

$$H-C = O$$
 $O-CH_2-CH_3$

6.3. Гидролиз органических и неорганических соединений

Гидролиз — обменная реакция с водой.

Гидролиз солей — реакция обмена некоторых солей с водой, в результате которой происходит смещение равновесия диссоциации воды.

Примеры гидролиза солей

Пример 1. Гидролиз соли слабого основания и сильной кислоты.

 $ZnCl_2$ — соль слабого основания $Zn(OH)_2$ и сильной кислоты HCl.

 $ZnCl_2 + H_2O \rightleftharpoons ZnOHCl + HCl$

 $Zn^{2+} + 2Cl^- + HOH \rightleftharpoons ZnOH^+ + 2Cl^- + H^+$

 $Zn^{2+} + 2Cl^- + HOH \rightleftharpoons ZnOH^+ + 2Cl^- + H^+$

Гидролиз идет по катиону, среда кислая.

Пример 2. Гидролиз соли сильного основания и слабой кислоты.

КСN — соль сильного основания КОН и слабой кислоты НСN.

 $K^+ + CN^- + HOH \rightleftharpoons K^+ + OH^- + HCN$

CN⁻ + HOH ≠ OH⁻ + HCN

Гидролиз идет по аниону, среда щелочная.

 $Na_{2}CO_{3}$ — соль сильного основания NaOH и слабой кислоты $H_{2}CO_{3}$.

 $Na_2CO_3 + H_2O \rightleftharpoons NaOH + NaHCO_3$

105

- 6–138. Цинковую пластинку поместили в водный раствор хлорида цинка. Через некоторое время наблюдали появление пузырьков газа. Какой это газ? Объясните наблюдаемое явление.
- 6-139. При смешивании водных растворов карбоната натрия и хлорида алюминия выпадает белый студенистый осадок и наблюдается появление пузырьков газа. Объясните наблюдаемое явление. Запишите уравнение реакции в молекулярной, полной и сокращенной ионной форме.
- 6-140. Что происходит при смешивании водных растворов:
 - а) карбоната натрия и сульфата алюминия;
 - б) сульфида натрия и нитрата хрома (III)?

Запишите уравнение реакции в полной и сокращенной ионной форме.

Спасибо за внимание!

8-903-514-23-90 gmol@mail.ru