

ОРГАНИЗАЦИЯ ВВОДНОГО ПОВТОРЕНИЯ ПО АЛГЕБРЕ В ОСНОВНОЙ ШКОЛЕ

(при использовании УМК «Лаборатория А.Г.Мордковича»)

26.08.2021 г.

Вопросы для обсуждения

- 1. Ключевые идеи построения курса алгебры. Начало изучения алгебры.
- 2. Особенности построения образовательного процесса в начале учебного года.
- 3. Примеры эффективных методов и средств обучения.

Математика в школе – не наука, а учебный предмет.

Математика в школе — предмет общекультурной направленности с гуманитарным потенциалом.

Основные принципы развивающего обучения

1) Теория занимает приоритетное положение.

Леонид Владимирович Занков (1901-1977)

2) Быстрый темп изучения материала.

3) Прохождение материала на высоком уровне сложности.

4) Организованное проблемное обучение.

5) Развитие всех учащихся.

Алгебра, 7-9 классы

и интегрального исчисления; обобщение

Авторы:

Мордкович А.Г., Семенов П.В., Александрова Л.А., Мардахаева Е.Л.

Математика – это язык, на котором говорят все точные науки.

изученного.

Н.И.Лобачевский

Алгебра и начала математического анализа, 10-11 классы

объём, оптимальные значения

некоторых величин.

Класс	Функци	Я	Реальные и физические пр	оцессы
7 класс	Линейная функция.		Равномерные процессы.	
8 класс	Квадратичная функция. Функции $y = x , y = \frac{k}{x}$	$y = \sqrt{x}$.	Равноускоренные процессы.	•
9 класс	Функции $y = x^3$ и $y = \sqrt[3]{9}$ Обобщение изученного в ос понятий.		пизация некоторых определен	ий и
10 класс	Тригонометрические функции. Степенные, показательные и логарифмические функции.		Периодические гармонические колебания. Процессы органического ро	процессы,
11 класс	Элементы теории пределов,	дифференциального	Мгновенная скорость, плош	адь и

Виды повторения

Вид повторения	Цель повторения
Вводное	Актуализация элементов ранее изученного содержания для облегчения изучения нового материала.
Поддерживающее	В ходе работы над темой актуализация ранее изученного материала этой же темы.
Систематизирующее	Укрупнение логической структуры изученного материала путём объединения его элементов в группы по тем или иным признакам, выявленным в ходе работы и выстраивание системы взаимосвязи между этими группами.
Обобщающее	Выделение основных содержательных и функциональных линий материала изученной темы, ключевых фактов, алгоритмов и ценностных установок.
Итоговое	В завершении работы над темой (или определённого временного периода) актуализация материала изученной (-ых) темы.

Примерное планирование

пп	Тема	Кол-во часов
	Глава 1. Математический язык. Математические модели.	17
1	Числовые и алгебраические выражения.	3
2	Понятие о математическом языке.	2
3	Свойства степеней с натуральными показателями.	3
4	Понятие о математических моделях.	2
5	Линейные уравнения с одной переменной.	3
6	Координатная прямая.	1
7	Числовые промежутки на координатной прямой.	2
	Контрольная работа № 1.	1

Математический язык. Математические модели

Актуализация знаний из курса Математики 5-6-х классов

§ 1. Числовые и алгебраические выражения

1.7. Найдите значение числового выражения наиболее рациональным способом:

a)
$$2\frac{2}{9} + 2\frac{2}{7} \cdot 0.3 + 2\frac{2}{7} \cdot \frac{2}{5} + 5\frac{7}{9} - 8\frac{3}{5};$$

Найдите значение числового выражения.

1.1. a)
$$5 \cdot \left(\frac{2}{5} - 0.1\right);$$

r)
$$5 \cdot \frac{2}{5} - 0.1$$
;

Упростите выражение.

1.24. a)
$$2x + 4y - x - 7y - 1 + 3y$$
; 6) $1,2c + d - 1,02c + 2,5d + 0,18c$;

- 1.4. Не выполняя вычислений, укажите верные равенства. Объясните, какие свойства действий позволяют утверждать, что равенство верно:
 - a) 321 + 9084 = 9084 + 321;
- Вычислите, используя свойства арифметических действий: a) $5.4 \cdot 3.81 + 5.4 \cdot 6.19$; \mathbf{r}) 4,7 · 6,37 + 4,7 · 3,63;

б)
$$3\frac{1}{4} + \frac{2}{2} + 1\frac{3}{4} + 2\frac{1}{2}$$
; $\qquad \qquad$ $)\frac{2}{5} + 5\frac{1}{7} + 2\frac{3}{5} + 1\frac{6}{7}$;

д)
$$\frac{2}{5} + 5\frac{1}{7} + 2\frac{3}{5} + 1\frac{6}{7}$$

1.11. Докажите, что выражение не определено:

a)
$$\frac{2\frac{3}{7} + 5\frac{1}{3} \cdot 1\frac{1}{8} - 4\frac{2}{7} \cdot \left(2\frac{1}{3} + 1\frac{2}{5}\right)}{1\frac{2}{3} \cdot \left(1\frac{1}{5} + 2\frac{1}{4}\right) - 5\frac{3}{4}};$$

1.31. Докажите, что значение выражения равно нулю при любых допустимых значениях переменных:

a)
$$\frac{2 \cdot (3x+y) - (3x-y) - 3 \cdot (x+y)}{2x - 5y}$$
;

 Найдите значение выражения, предварительно составив план вычислений:

a)
$$\frac{1\frac{5}{37} \cdot \left(\frac{11}{14} + 1\frac{1}{3} + \frac{27}{28}\right) + 1\frac{1}{32} \cdot \left(1\frac{3}{14} + \frac{2}{11} + \frac{9}{154}\right)}{\frac{19}{84} : \left(5\frac{13}{42} - 2\frac{13}{28} + \frac{5}{24}\right)};$$

- **1.12.** Из пункта A в пункт B, находящийся от A в 348 км, выехал автомобиль со скоростью 54 км/ч. Одновременно навстречу ему из пункта B выехал второй автомобиль со скоростью 62 км/ч. Через сколько времени автомобили встретятся?
- **1.27.** Найдите, если это возможно, значение выражения $\frac{2x+y}{3x-2y}$ при заданных значениях переменных:

a)
$$x = 2, y = 2;$$

a)
$$x = 2$$
, $y = 2$; r) $x = -3$, $y = -3$;

Математический язык. Математические модели

Детальное изучение процесса составления математической модели

§ 2. Понятие о математическом языке

Прочитайте алгебраическое выражение, используя термины математического языка.

- **2.1.** a) a + bc; B) $c^2 d^2$; Д) $(p + q)^3$; 6) xy z; Г) $m^3 + n^3$; e) $(x a)^2$.

- Запишите выражение на математическом языке.
- **2.3.** а) Сумма числа x и утроенного произведения x и y;
 - б) произведение числа x и суммы x и y;
 - в) квадрат разности частного чисел a и b и числа c;
- **2.7.** Скорость движения v равна отношению расстояния s ко времени движения t.
 - а) Как найти расстояние, пройденное телом, зная его скорость и время движения?

- 2.8. Запишите на математическом языке:
 - а) двузначное число N содержит a десятков и b единиц;
 - б) трёхзначное число M содержит a сотен, b десятков и c единиц;

- 2.11. Вычислите:
 - а) 2^n , если n=1,4,5;
 - б) a^3 , если a = -2, 0, 3;

Запишите данное утверждение и ответы на поставленные вопросы на математическом языке.

- **2.6.** Периметр P прямоугольника равен удвоенной сумме его сторон а и в.
 - а) Чему равен полупериметр p этого прямоугольника?
 - б) Как найти сторону прямоугольника, если известны полупериметр и его другая сторона?

Вычислите.

2.13. a)
$$\left(2\frac{1}{5}\right)^2$$
;

r)
$$\left(-1\frac{2}{3}\right)^4$$
;

$$6)\left(-3\frac{1}{3}\right)^{3};$$

$$\pi$$
) $\left(5\frac{1}{4}\right)^2$;

- 2.9. Запишите произведение в виде степени, назовите основание и показатель степени:
 - a) $a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a$;
 - $(-b) \cdot (-b) \cdot (-b) \cdot (-b) \cdot (-b) \cdot (-b)$;
 - B) $(ab) \cdot (ab) \cdot (ab) \cdot (ab) \cdot (ab)$;

2.22. Не производя вычислений, расположите в порядке возрастания следующие числа:

a)
$$(-0,4)^2$$
, $(-1,5)^2$, $\left(\frac{1}{7}\right)^3$, $(-7)^3$;

Обогашение математического языка

Математический язык. Математические модели

§ 3. Свойства степеней с натуральными показателями Решите уравнение.

3.16. a)
$$x \cdot 7^3 = 7^5$$
;

$$6) x: 2^5 = 2^3;$$

3.17. a)
$$\frac{x^{17} \cdot x^{23}}{(x^8)^3 \cdot x^5 \cdot (x^2)^3} = -243;$$

$$6) \frac{(x^8)^4 \cdot (x^5)^9}{(x^{15})^4 \cdot (x^4)^4} = 5;$$

3.26. Сравните:

а) $(10x)^5$ и $10x^4$, если x > 0;

б)
$$\frac{a^9}{7}$$
 и $\left(\frac{a}{7}\right)^9$, если $a > 0$;

3.13. Запишите в виде степени с основанием 5:

6)
$$5^3 \cdot 625$$
;

B)
$$5^4 \cdot 125$$
;

г) 5⁹ · 3125.

3.14. Вычислите:

a)
$$\frac{15^{13} \cdot 15}{15^{12}}$$
;

$$\Gamma) \, \frac{43^{12}}{43^6 \cdot 43^5};$$

$$6) \frac{2^6 \cdot (2^3)^5}{2^{18}};$$

д)
$$\frac{(5^6)^3 \cdot 5^8}{5^{22}}$$
;

Представьте частное в виде степени.

3.3. a) $y^6:y$;

r) $b^5:b^4$:

б) $a^5:a^3$:

 π) $k^6:k^3$:

B) $c^{11}:c^5:c^2$:

e) $d^8: d^3: d^2$.

3.4. a) $(-xy)^7 : (-xy)^5$; r) $(ab)^9 : (ab)^4 : (ab)^2$; б) $(a-b)^8 : (a-b)^4$; д) $(3c-d)^{12} : (3c-d)^5 : (3c-d)^4$;

B) $(k-n)^{10}:(k-n)^3$;

e) $(7c + 3d)^{23}$: $(7c + 3d)^{13}$: $(7c + 3d)^4$.

3.21. Выполните возведение дроби в степень:

a)
$$\left(\frac{3x}{2y}\right)^5$$

a)
$$\left(\frac{3x}{2y}\right)^5$$
; B) $\left(-\frac{b}{3d}\right)^3$; π) $\left(\frac{a^3}{5b}\right)^4$;

д)
$$\left(\frac{a^3}{5b}\right)^4$$
;

6)
$$\left(\frac{6n}{7m}\right)^2$$

6)
$$\left(\frac{6n}{7m}\right)^2$$
; $\qquad \qquad \Gamma$) $\left(-\frac{2p}{q}\right)^6$; $\qquad \qquad \text{e)} \left(-\frac{4x}{u^2}\right)^3$.

Найдите значение выражения рациональным способом.

e)
$$\left(-\frac{4x}{y^2}\right)^3$$
.

3.5. Представьте в виде степени с основанием а:

a) $(a^2)^7$;

B) $(a^{23})^4$;

 π) $(a^{10})^6$;

б) $(a^6)^8$;

 Γ) $(a^7)^{24}$;

e) $(a^{31})^3$.

Заполните пропуски так, чтобы получилось верное равенство.

3.6. a) $y^6 \cdot ... = y^{10}$;

 $f(a) \dots b^4 = b^{12}$:

6) ... $\cdot a^5 = a^{13}$;

 π) $k^6 \cdot ... = k^{25}$;

B) $c^{11} \cdot \ldots \cdot \ldots = c^{20}$;

e) ... $\cdot d^{13} \cdot ... = d^{28}$.

3.7. a) $a^{15}: ... = a^3$;

r) $y^{16}:...=y^9$;

6) ... : $k^{13} = k^{15}$; B) ... : d^{13} : ... = d^2 : π) ... : $b^5 = b^{12}$; e) $c^{21}:...:...=c^7$. **3.24.** a) $1,25^3 \cdot 80^3$;

 Γ) $0.04^5 \cdot (-25)^5$;

 $(6) (-0.4)^4 \cdot 2.5^5$;

 π) 1256 · 0.0085;

B) $\left[1\frac{1}{2}\right]^7 \cdot \left[-\frac{2}{2}\right]^7$;

e) $\left(-\frac{3}{5}\right)^6 \cdot \left(3\frac{1}{2}\right)^6$.

3.25. a) $\frac{3^5 \cdot 4^5}{12^3}$;

в) $\frac{10^{12}}{2^6 \cdot 5^6}$; д) $\frac{5^{16} \cdot 3^{16}}{15^{14}}$;

АЛГЕБРА КЛАСС

Глава 1

Математический язык. Математические модели

Изучение метода математического моделирования — как основного метода познания

§ 4. Понятие о математических моделях

Составьте математическую модель данной ситуации.

- **4.1.** Первое число x, второе в 1,5 раза больше. Сумма этих чисел 30,6.
- 4.2. Цена за 1 кг яблок одного сорта x р., а другого y р. Для детского праздника купили 5 кг одного сорта и 6 кг другого. При этом оказалось, что за яблоки разных сортов заплатили поровну.
- 4.3. В первом букете n роз, а во втором в 4 раза больше, чем в первом. Когда к первому букету прибавили 15 роз, а ко второму 3 розы, в обоих букетах роз стало поровну.

Решите задачу, выделяя три этапа математического моделирования.

- 4.20. Два рыбака поймали 15 рыб. Первому повезло больше он поймал на 3 рыбы больше, чем второй. Сколько рыб поймал каждый рыбак?
- **4.26.** Дополните условие и решите полученную задачу, выделяя три этапа математического моделирования.
 - а) Сумма двух натуральных чисел равна 127. Найдите эти числа, если...
 - б) Найдите три последовательных трёхзначных числа, если...
- **4.27.** Придумайте задачу, решением которой может быть математическая модель:
 - a) (3x + 4y) : 7;
- r) 3x + 4(x + 1) = 193;
- 6) 20 + 3(x + y);
- π) 2,4x + 5,6(x + 15) = 444;
- B) 3x + 2(x + 4);
- e) $x + 0.12x + (x + 0.12x) \cdot 0.05 = 1176$.

- **4.18.** Введите переменную и составьте математическую модель данной ситуации.
 - а) В магазин завезли красных футболок в 2 раза больше, чем синих. Сколько всего футболок завезли в магазин?
 - б) За выходные дни было продано 12 футболок. Сколько футболок осталось?
 - в) Цена на футболку была снижена на 5 %. Сколько стала стоить футболка?
 - г) Для выполнения задания одному рабочему требуется на 2 ч больше, чем другому. Какую часть задания выполнят за 1 ч оба рабочих, работая вместе?

Примерное планирование

пп	Тема	Кол-во часов
	Глава 1. Множество действительных чисел.	16
1	Множества, их элементы и подмножества.	1
2	Операции над множествами.	2
3	Рациональные числа.	1
4	Познакомимся с квадратными корнями.	2
5	Иррациональные числа.	1
6	Действительные числа и числовая прямая.	1
7	Свойства числовых неравенств.	2
8	Линейные неравенства.	2
9	Модуль действительного числа. Функция $y = x $.	2
10	Приближённые значения действительных чисел.	1
	Контрольная работа № 1.	1

Множество действительных чисел

А. Г. Нордович, П. В. Солоон, П. В. Антинорова, Е. Г. Мардоного **АЛГЕБРА**

§ 1. Множества, их элементы и подмножества

- 1.1. По словесному описанию множества задайте это множество перечислением его элементов:
 - а) целые числа, которые больше -3, но меньше 3;
 - б) натуральные числа, которые не меньше 7,9 и не больше 12,1;
 - в) чётные числа интервала (10; 20);
 - г) российские города-миллионники, т. е. города с населением более миллиона человек (используйте поиск в Сети).
- 1.2. Числовое множество указано перечислением своих элементов в порядке возрастания. Найдите число, стоящее на пятом месте от начала, и число, стоящее на шестом месте от конца:
 - a) $A = \{1; 2; ...; 9; 10\};$

- r) $G = \{2; 4; ...; 14; 16\};$
- 6) $B = \{12; 13; ...; 19; 20\};$
- д) $D = \{-10; -7; ...; 17; 20\};$
- B) $C = \{104; 105; ...; 119; 120\};$ e) $E = \{\frac{1}{2}; \frac{2}{3}; \frac{3}{4}; ...; \frac{98}{99}; \frac{99}{100}\}.$
- 1.3. Придумайте несколько разных словесных описаний множества A = 11. 2. 31

Какие из следующих утверждений верны, а какие неверны?

- **1.4.** a) $2 \in [1; 3];$
- B) $3 \in [1; 2];$
- д) $3 \in [1; 3];$

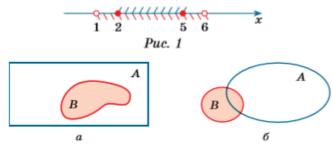
- б) $3 \notin [1; 3];$
- r) $0 \notin [1; 2];$
- e) $3 \in [1; 3)$.
- 1.11. На координатной прямой отметьте разными штриховками множества X, Y и $X \setminus Y$:
 - a) X = [1; 5], Y = [1; 4];
- r) $X = [0; +\infty], Y = [1; 10];$
- б) X = [2; 7], Y = [2; 3);B) X = (3; 7), Y = (3; 4,7];
- д) $X = (-\infty; 5), Y = (-\infty; -5);$ e) $X = (-\infty; +\infty), Y = (-\infty; 6).$

Какие из следующих утверждений верны, а какие неверны?

1.12. a) $(2; 3) \subset [1; 3];$

 Γ) [2; 3] \subset (2; 3];

6) $(2; 3] \subset [1; 3];$


- д) $\{4\} \subset (1; 3];$
- B) $(2; 3] \subset [1; 3);$ e) $\{1; 2; 3\} \subset [1; 3]$.

Актуализация знаний из курсов Математики 5-6-х классов и Алгебры 7-го класса

Определение 1. Если каждый элемент множества B является элементом множества A, то множество B называют подмножеством множества A и используют запись $B \subseteq A$; знак \subseteq называют знаком включения.

Если $B \subset A$, то используют и такую терминологию: множество Bcodepжится в множестве A (множество A содержит множество B).

Например, $\{1; 3; 4\} \subset \{0; 1; 2; 3; 4; 5\}$. Действительно, каждое число, перечисленное в левой части включения, перечислено и в его правой части. Другой пример: множество согласных букв русского языка есть подмножество множества всех букв русского алфавита просто потому, что каждая согласная буква является буквой. Вот ещё пример: [2; 5] \subset [1; 6]. Действительно, если $x \in$ [2; 5], то $2 \le x \le 5$, любое такое значение x удовлетворяет и неравенству 1 < x < 6, т. е. $x \in (1; 6)$ (рис. 1).

Puc. 2

не является, так как в множестве B есть точки, которые не принадлежат A.

Часто в качестве плоских фигур для таких картинок используют круги, которые называют кругами Эйлера. Сами картинки называют диаграммами Эйлера.

С каждым подмножеством В множества А связано другое подмножество, которое «дополняет» B до всего A. Кратко говоря, надо из всего множества A «вырезать» подмножество B, то, что останется, и будет «дополнять» B до A.

Определение 2. Дополнением подмножества B до множества A называют множество, которое состоит из элементов множества A, не являющихся элементами подмножества В.

Множество действительных чисел

§ 2. Операции над множествами

Продолжим изучение элементов теории множеств, познакомимся с операциями пересечения и объединения множеств.

Определение 1. Пересечением множеств A и B называют множество, состоящее из всех общих элементов множеств A и B, т. е. из всех элементов, которые принадлежат и множеству A, и множеству B. Обозначение: $A \cap B$. Символ \cap — знак пересечения.

Таким образом, $A \cap B = \{x \mid x \in A \text{ и } x \in B\}$. Запись « $x \mid$ » читают так: «из элементов x таких, что...».

Для наглядного объяснения операций над множествами удобно использовать изображение множеств в виде кругов Эйлера. На рисунке 3 с помощью кругов Эйлера дана иллюстрация операции пересечения двух множеств.

Можно рассматривать пересечения не только двух, но и трёх, четырёх и т. д. множеств. Например, пересечением множеств A, B и C называют множество, состоящее из всех элементов, которые принадлежат и множеству A, и множеству B, и множеству C (рис. 4). Пересечение множеств A, B и C обозначают так: $A \cap B \cap C$.

Использование операции пересечения множеств в математике соответствует использованию союза «и» в русском языке. Родственный ему союз «или» связан с другой операцией над множествами — onepaqueй объединения.

 $A \cap B$ Puc. 3

Puc. 4

Обогащение математического языка.

- 2.3. Найдите пересечение множеств А и В:
 - а) A множество всех натуральных чисел, кратных 5, B множество натуральных чисел, меньших 45;
 - б) A множество всех нечётных целых чисел,
 - $B = \{0; 7; 14; 21; 28; 35; ...; 77\};$
 - в) A множество всех рациональных чисел, модуль которых меньше 10, B множество целых чисел;
 - г) A множество всех чётных целых чисел, B множество натуральных чисел, не превышающих 24;
 - д) $A = \{-15; -14; -13; ...; -1; 0; 1; 2; ...; 12\}; B$ множество целых чисел, кратных 5;
 - е) A множество всех натуральных чисел, больших 21, B множество всех рациональных чисел.
- **2.5.** а) Дано множество A делителей числа 36 и множество B делителей числа 48. Найдите пересечение множеств A и B.
 - б) Дано множество A делителей числа 40 и множество B делителей числа 60. Найдите пересечение множеств A и B.
- **2.6.** а) Дано множество A двузначных чисел, кратных 2, и множество B двузначных чисел, кратных 7. Найдите пересечение множеств A и B.
 - б) Дано множество A двузначных чисел, кратных 3, и множество B двузначных чисел, кратных 8. Найдите пересечение множеств A и B.
- **2.8.** Для заданных множеств A и B изобразите на координатной прямой множество $A \cap B$. Запишите полученный числовой промежуток.
 - a) A = [-7; 3] и B = [-2; 5];
 - б) $A = (-\infty; 1]$ и $B = [-4; +\infty);$
 - B) $A = \left(-4; 1\frac{7}{11}\right)$ if B = [1,6; 5,8];
 - г) A = [-6; 2] и B [-2; 7];
 - д) $A = (-\infty; 5)$ и $B = [-2; +\infty);$
 - e) $A = \left(-3\frac{2}{9}; 3, 2\right)$ \mathbf{H} $B = \left[-3, 2; 3\frac{3}{11}\right]$.

Множество действительных чисел

§ 3. Рациональные числа

Теперь разделим «уголком» числитель дроби $\frac{17}{99}$ на её знаменатель, представив 17 в виде 17,0000...:

$$\begin{array}{c|c}
17,0000... & 99 \\
\hline
170 & 0,1717... \\
\underline{99} \\
710 \\
\underline{693} \\
170 \\
\underline{99} \\
710 \\
693
\end{array}$$

■ Пример Записать в виде обыкновенной дроби бесконечную десятичную периодическую дробь:

a) 1,(23); 6) 1,5(23).

Решение. а) Введём обозначение x = 1,(23), т. е. x = 1,232323.... Умножим x на такое число, чтобы запятая передвинулась вправо ровно на один период. Поскольку в периоде содержится ровно две цифры, нужно, чтобы запятая передвинулась вправо на две цифры, а для этого число x умножим на 100. Получим:

откуда находим
$$x = \frac{122}{99}$$
.

Итак, 1,(23) =
$$\frac{122}{99}$$
 = $1\frac{23}{99}$.

Обогашение математического языка.

В § 1 мы говорили о множестве N натуральных чисел:

$$N = \{1; 2; 3; 4; ...\}.$$

- Выделите из данных высказываний истинные.
 - a) $10 \in \mathbb{N}, -5 \in \mathbb{Q}, -3\frac{2}{3} \in \mathbb{Q}, 0 \in \mathbb{N}, -2 \in \mathbb{Z};$
 - 6) $2,5 \in \mathbb{Z}, -3 \in \mathbb{Z}, -5 \in \mathbb{Q}, -5 \in \mathbb{N}, 14 \in \mathbb{N};$
 - B) $\pi \in N$, $1\frac{1}{12} \in Q$, $-8 \in N$, $0 \in Q$, $14 \in Z$;
 - r) 1,9573187... $\notin \mathbf{Q}$, $-11 \in \mathbf{Z}$, $-21 \notin \mathbf{N}$, $0 \in \mathbf{N}$, $-12\frac{2}{3} \in \mathbf{Q}$;
 - д) $7,2 \notin \mathbf{N}, 72,104104... \in \mathbf{Q}, -7\frac{2}{9} \in \mathbf{Z}, -3\frac{3}{7} \notin \mathbf{Z}, 2 \in \mathbf{Z};$
 - e) $1,0 \notin Q$, $5,2 \notin N$, $-3 \in Q$, 0, $(12) \in Q$, $2 \in Z$.
- **3.2.** Используя обозначения N, Z, Q и знаки \in , \notin , запишите следующее утверждение и установите его истинность или ложность:
 - а) 8 является натуральным числом;
 - б) -3,2 не является рациональным числом;
 - в) 0 является натуральным числом;
 - г) л не является целым числом;
 - д) 1,43542975... не является рациональным числом;
 - е) 5,4 является целым числом.
- 3.14. Расположите в порядке возрастания числа:
 - a) 2,67; $2\frac{2}{3}$; 2,(67); 2,66; r) 4,34; $4\frac{1}{3}$; 4,(34); 4,33;
 - б) 4,21; 4,(2); $4\frac{7}{33}$; 4,22; д) 2,166; $2\frac{1}{6}$; 2,1(67); 2,167;
 - B) 1,834; $1\frac{5}{6}$; 1,8(34); 1,833; e) 1,(9); 1,9; $1\frac{10}{11}$; 1,909.

Множество действительных чисел

АЛГЕБРА

§ 4. Познакомимся с квадратными корнями

Вычислите.

в)
$$\sqrt{1}$$
;

4.4. a)
$$\sqrt{81}$$
; B) $\sqrt{1}$; π) $\sqrt{256}$;

6)
$$\sqrt{225}$$

6)
$$\sqrt{225}$$
; r) $\sqrt{121}$; e) $\sqrt{0}$.

e)
$$\sqrt{0}$$

4.5. a)
$$\sqrt{0.64}$$
;

B)
$$\sqrt{0.04}$$

в)
$$\sqrt{0.04}$$
; д) $\sqrt{3.24}$;

6)
$$\sqrt{2,89}$$
;

e)
$$\sqrt{0.01}$$
.

B)
$$\sqrt{1\frac{29}{196}}$$

д)
$$\sqrt{1\frac{25}{144}}$$

6)
$$\sqrt{4\frac{25}{36}}$$
;

r)
$$\sqrt{\frac{121}{169}}$$
; e) $\sqrt{3\frac{22}{49}}$.

e)
$$\sqrt{3\frac{22}{49}}$$

4.8. a)
$$\left(-\sqrt{13}\right)^2$$
; B) $-\left(-\sqrt{81}\right)^2$; π D) $-\left(\sqrt{1,2}\right)^2$; π D) $-\left(\sqrt{1,2}\right)^2$; π D) $-\left(-\sqrt{17}\right)^2$; e) $-\left(-\sqrt{64}\right)^2$.

B)
$$-(-\sqrt{81})^2$$

д)
$$-(\sqrt{1,2})^2$$
;

$$\left(\sqrt{2,5}\right)^2$$
; r) $\left(-\sqrt{1}\right)$

e)
$$-(-\sqrt{64})^2$$

4.10. a)
$$\sqrt{81} \cdot \sqrt{9}$$
;

r)
$$\sqrt{\frac{169}{225}} \cdot \sqrt{625}$$
;

6)
$$\sqrt{49} \cdot \sqrt{144}$$
;

д)
$$\sqrt{324} \cdot \sqrt{1\frac{45}{324}}$$
;

B)
$$\sqrt{\frac{16}{25}} \cdot \sqrt{225}$$
;

e)
$$\sqrt{289} \cdot \sqrt{1 \frac{35}{289}}$$
.

Обогащение математического языка.

4.17. Найдите, если возможно, значение заданного алгебраического выражения. Укажите выражения, которые не определены при заданном значении переменной:

а)
$$\sqrt{6-2a}$$
, если $a=1$;

$$r$$
) $\sqrt{4-2a}$, если $a=1.5$:

6)
$$\sqrt{5b^2 + 10b + 9}$$
, если $b = 2$;

$$\pi$$
) $\sqrt{6b^2 + 5b - 3}$, если $b = -3$;

в)
$$\sqrt{c^3 - c^2}$$
, если $c = 5$;

e)
$$\sqrt{2x^2 - x^3}$$
, если $x = 3$.

4.18. Решите уравнение:

a)
$$\frac{1}{3}x^2 = 75$$
;

$$B) 4x^2 - 28 = 0$$

a)
$$\frac{1}{9}x^2 = 75$$
; B) $4x^2 - 28 = 0$; π) $5x^2 - 484 = 121$;

6)
$$\frac{1}{6}x^2 = 24$$

$$r) 3x^2 - 78 = 0$$

6)
$$\frac{1}{6}x^2 = 24$$
; r) $3x^2 - 78 = 0$; e) $7x^2 - 558 = 625$.

4.19. Укажите, если возможно, при каком значении переменной равенство является верным:

a)
$$\sqrt{x} = 11$$

B)
$$\sqrt{x} = -9$$

a)
$$\sqrt{x} = 11;$$
 B) $\sqrt{x} = -9;$ π $\sqrt{x} = \frac{3}{4};$

6)
$$\sqrt{x} = \frac{2}{3}$$
; r) $\sqrt{x} = 16$; e) $\sqrt{x} = -12$.

r)
$$\sqrt{x} = 16$$

e)
$$\sqrt{x} = -12$$
.

4.20. Решите уравнение:

a)
$$\sqrt{x-1} = 4$$
;

B)
$$\sqrt{289 - x^2} =$$

a)
$$\sqrt{x-1} = 4$$
; B) $\sqrt{289 - x^2} = 8$; π) $\sqrt{-x} = -13$;

6)
$$\sqrt{x+2} = 6$$
;

r)
$$\sqrt{x^2 - 25} = 0$$
; e) $\sqrt{-x} = 17$.

$$9)\sqrt{-x}=17.$$

4.24. Сколько целых чисел принадлежит промежутку:

B)
$$\left(-\sqrt{21}; \sqrt{43}\right);$$

д)
$$(\sqrt{0,7}; \sqrt{0,91}];$$

6)
$$[-7; \sqrt{19}];$$
 r) $(\sqrt{3}; \sqrt{53});$

e)
$$\left[-\sqrt{47}; -\sqrt{37}\right]$$
?

4.25. Сколько натуральных чисел принадлежит промежутку:

a)
$$[-1; \sqrt{51}];$$

B)
$$(-\sqrt{13}; \sqrt{13});$$

a)
$$[-1; \sqrt{51}];$$
 B) $(-\sqrt{13}; \sqrt{13});$ $[-1; \sqrt{51}];$ $[-1; \sqrt{51}];$ B) $(-\sqrt{71}; \sqrt{0.97}];$ B) $[-2; \sqrt{39}];$ B) $[-\sqrt{77}; \sqrt{23}];$ B) $[-\sqrt{77}; \sqrt{13}];$ B) $[-\sqrt{77}; \sqrt{13}]$

$$\Gamma$$
) $(-\sqrt{23}; \sqrt{23})$;

Множество действительных чисел § 5. Иррациональные числа

Быделите иррациональные числа:

- a) $\sqrt{3}$; 0; π ; $-\sqrt{21}$; 0,0(32);
- 6) 3,32409673...; $\sqrt{19}$; $\frac{\pi}{4}$; $-\sqrt{3}$; 0,1(6);
- B) $\frac{17}{10}$; $-\frac{\pi}{2}$; $\sqrt{2}$; $-\sqrt{3}$; 4,(21);
- r) 2,34103528...; $-\sqrt{13}$; π ; $\sqrt{1,1}$; 4,0(1);
- д) $\frac{11}{17}$; $\sqrt{23}$; $\frac{\pi}{2}$; $-\sqrt{33}$; 0,01(3);
- e) 0,23456; $-\sqrt{\pi}$; $\sqrt{41}$; $-\sqrt{29}$; 3,(142).

Обогащение математического языка.

Между какими соседними целыми числами находится иррацио-

a)
$$\sqrt{29}$$
;

a)
$$\sqrt{29}$$
; B) $-\sqrt{43}$; π) $-\frac{3\pi}{4}$;

- 6) 2π : r) $-\sqrt{53}$; e) $\sqrt{37}$?

5.3. Проверьте справедливость соотношения:

- a) $6.2 < \sqrt{39} < 6.3$; r) $4.5 < \sqrt{21} < 4.6$;
- 6) $6.3 < \sqrt{41} < 6.4$; π) $4.4 < \sqrt{19} < 4.5$;
- B) $-4.8 < -\sqrt{23} < -4.7$; e) $-5.4 < -\sqrt{29} < -5.5$.

5.4. Найдите три иррациональных числа, которые находятся между числами:

- a) 4 u 5; B) -3 u -2; π -9 u -8; π 6 u 7; e) 11 u 12.

5.5. Сравните числа:

- а) $\sqrt{7}$ и 3; в) $-\sqrt{13}$ и -4; д) -4.5 и $-\sqrt{19}$; 6) $\sqrt{17.3}$ и 4; г) 2 и $\sqrt{5}$; е) 6.2 и $\sqrt{37.1}$.

5.6. Докажите, что:

- а) число $5 + \sqrt{3}$ является иррациональным;
- б) сумма чисел $3 + \sqrt{2}$ и $3 \sqrt{2}$ число иррациональное;
- в) произведение чисел $\sqrt{7} + \sqrt{13}$ и $\sqrt{7} \sqrt{17}$ число иррациональное:
- г) число $1 \sqrt{11}$ является иррациональным;
- д) сумма чисел $5 + \sqrt{6}$ и $7 \sqrt{6}$ число иррациональное;
- е) произведение чисел $\sqrt{11} + \sqrt{21}$ и $\sqrt{21} \sqrt{11}$ число иррациональное.
- **5.8.** Докажите, что на графике функции $y = \sqrt{3} \cdot x$ имеется только одна точка, у которой абсцисса и ордината — целые числа. Постройте график этой функции.

Множество действительных чисел

§ 6. Действительные числа и числовая прямая

6.2. Расположите в порядке возрастания числа:

a)
$$-\frac{\pi}{2}$$
; 0; π ; $\sqrt{11}$; 1;

6)
$$-\pi$$
; 3,31453678...; $\frac{\pi}{4}$; $-\sqrt{3}$; 1,7;

B)
$$3,123456103...; -\frac{6}{\sqrt{2}}; -\pi; \sqrt{14}; -\frac{22}{7};$$

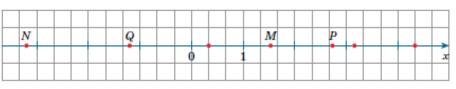
$$\Gamma$$
) -1,2; $-\frac{\pi}{3}$; $\sqrt{2}$; $\sqrt{\pi}$; 0;

д) 3,14;
$$\pi$$
; $\frac{\pi}{2}$; $-\sqrt{10}$; -3 ;

e)
$$0.811; -\sqrt{\pi}; \frac{\sqrt{3}}{2}; -3.14; -1.(142).$$

6.3. Сравните числа:

- а) π и 3,14; в) 2π и $\sqrt{37}$; д) $\sqrt{5}$ и 2,2;
- 6) $\sqrt{3}$ и 1,7; г) 2π и 6,3; е) π и $\sqrt{10}$.


6.4. Сравните с нулём значение числового выражения:

- a) $\sqrt{2} 2$; B) $0.5\pi 1.5$; π 3π ;

- 6) $3 \sqrt{7}$; r) $2\pi 6.2$; e) $\sqrt{10} 3$.

Обогащение математического языка.

6.8. На числовой прямой (рис. 10) отмечены некоторые из данных чисел: $\sqrt{8}$; -1,2; 4,3; π ; $\frac{\pi}{2}$; $\frac{1}{2}$; $-\sqrt{10}$.

Puc. 10

- а) Какое число соответствует точке N, а какое точке M?
- б) Какое число соответствует точке P, а какое точке Q?

6.10. Изобразите схематически на числовой прямой числа:

a)
$$-\frac{\pi}{2}$$
; π ; $\sqrt{7}$;

B)
$$-\pi; \frac{\pi}{4}; -\sqrt{3}$$

a)
$$-\frac{\pi}{2}$$
; π ; $\sqrt{7}$; B) $-\pi$; $\frac{\pi}{4}$; $-\sqrt{3}$; π) $\frac{\pi}{2}$; $-\sqrt{10}$; -1.5 ;

6)
$$\frac{\pi}{2}$$
; $\sqrt{2}$; $-\sqrt{\pi}$

$$r) - \frac{\pi}{3}; \sqrt{14}; \frac{10}{7}$$

6)
$$\frac{\pi}{3}$$
; $\sqrt{2}$; $-\sqrt{\pi}$; r) $-\frac{\pi}{3}$; $\sqrt{14}$; $\frac{10}{7}$; e) $\frac{2\pi}{3}$; $-\sqrt{5}$; $-\frac{5}{3}$.

Примерное планирование

пп	Тема	Кол-во часов
	Глава 1. Системы уравнений.	17
1	Уравнения с двумя переменными.	1
2	График уравнения с двумя переменными.	2
3	Уравнение окружности на координатной плоскости.	2
4	Основные понятия, связанные с системами уравнений с двумя переменными.	2
5	Решение систем уравнений методом подстановки.	2
6	Решение систем уравнений методом алгебраического сложения.	2
7	Решение систем уравнений методом введения новых переменных.	1
	Контрольная работа № 1.	1
8	Системы уравнений как математические модели реальных ситуаций.	4

Системы уравнений

Актуализация знаний из курса Алгебры 7-8 классов.

§ 1. Уравнения с двумя переменными

1.1. Является ли пара чисел (1; 2) решением уравнения:

a)
$$x^2 + 2y = 5$$
;
6) $3x^2 - 2y^4 + 4xy^2 = 0$;

r)
$$2x^2 - 4y = -6$$
;

$$6) \ 3x^2 - 2y^4 + 4xy^2 = 0;$$

д)
$$3x^5 - 2y^3 + 5x^2y = -3$$
;

B)
$$4x^2 - \sqrt{y+2} = 2$$
; e) $3x^2 - 4\sqrt{x} = 2$?

1,3. Решите уравнение:

a)
$$(x-4)^2 + (y+1)^2 = 0$$
;

6)
$$\sqrt{2x-3} + \sqrt{3y+6} = 0$$
;

B)
$$\sqrt{x-3} + |y^2-4| + \sqrt{2z+5} = 0$$
;
r) $(x+3)^2 + (y-2)^2 = 0$;

r)
$$(x + 3)^2 + (y - 2)^2 = 0$$
;

д)
$$\sqrt{3x+9} + \left| \frac{1}{2}y - 3 \right| = 0;$$

e)
$$\sqrt{x^2-9} + \sqrt{3y+6} + |0,3z-3| = 0$$
.

Есть ли среди представленных уравнений пары равносильных уравнений? Назовите их, объясните свой выбор.

1.4. a) 4x - 3y = 18, x = 0.75y + 6, $y = 6 - 1\frac{1}{2}x$;

6)
$$x^2 + y - 2x + 3 = 0$$
, $y = -2 - (x - 1)^2$, $x = \sqrt{y - 2} + 1$;

B)
$$xy = -6$$
, $y = -\frac{6}{x}$, $xy + 4 = -2$;

r)
$$2x + 3y = 9$$
, $y = 3 - \frac{2}{3}x$, $x = 3 + 1.5y$;

д)
$$x^2 + y - 4x + 2 = 0$$
, $y = (x - 2)^2 + 2$, $x = \sqrt{y - 2} + 2$;

e)
$$xy = 8$$
, $y = \frac{8}{x}$, $xy - 5 = 3$.

Найдите целочисленные решения уравнения.

1.7. a) 3x + 2y = 7;

r) 3x - 2y = 7;

6) 4x - 5y = 19;

 π) 3x - 5y = 13;

B) 7x - 3y = 10;

e) 5x + 7y = 3.

В курсе алгебры 7-го класса мы изучали линейные уравнения с $\partial вумя$ переменными — уравнения вида ax + by = c, где a, b, c числа (коэффициенты). Мы знаем, что всякую пару чисел (x; y), которая удовлетворяет этому уравнению, т. е. обращает равенство с переменными ax + by = c в верное числовое равенство, называют решением уравнения ax + by = c. Например, решениями уравнения 3x + 4y = 12 являются такие пары чисел: (x; y): (0; 3), (4; 0), (-4; 6), $\frac{16}{2}$; -1 — и многие другие. А вот пары (1; 1), (2; -5), (1,3; $\sqrt{2}$) не являются решениями уравнения 3x + 4y = 12.

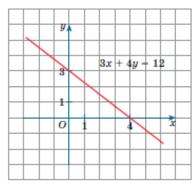
Разумеется, встречаются и уравнения с двумя переменными, не являющиеся линейными. Вообще, уравнение с двумя переменными x, y — это уравнение вида p(x; y) = 0 или h(x; y) = g(x; y), где p(x; y), h(x; y), g(x; y) — алгебраические выражения; решением уравнения с двумя переменными (х; у) называют всякую пару чисел (х; у), которая удовлетворяет этому уравнению.

Пусть, например, дано уравнение с двумя переменными $2x^2 - xy = 2x + y - 4$. Пара (1; 2) является решением этого уравнения. В самом деле, подставив значения x = 1, y = 2 в левую и правую части уравнения, получим: $2 \cdot 1^2 - 1 \cdot 2 = 2 \cdot 1 + 2 - 4$; 0 = 0 — верное равенство.

Вот ещё одно решение этого уравнения: (0; 4) (проверьте!). А, скажем, пара (3; 2) решением уравнения $2x^2 - xy = 2x + y - 4$ не является: при x = 3, y = 2 левая часть уравнения принимает значение 12, а правая — значение 4.

Встречаются и уравнения, не имеющие решений, например $3x^{2} + 6 = 3 - 3y^{2}$. Действительно, значения его левой части — не

Системы уравнений


§ 2. График уравнения с двумя переменными

Пусть дано уравнение p(x; y) = 0. Множество точек (x; y) координатной плоскости xOy таких, что (x; y) — решение уравнения p(x; y) = 0, называют графиком уравнения. В курсе алгебры 7-го класса мы научились строить графики линейных уравнений с двумя переменными. Графиком линейного уравнения с двумя переменными ax + by = c, где хотя бы одно из чисел a, b отлично от нуля, является прямая линия, для построения которой достаточно указать две точки, ей принадлежащие. На рисунке 1 изображён график уравнения 3x + 4y = 12 — прямая,

проходящая через точки (0; 3) и (4; 0), удовлетворяющие уравнению 3x + 4y = 12.

Если уравнение p(x; y) = 0 равносильно уравнению y = f(x), то график уравнения p(x; y) = 0 совпадает с графиком функции y = f(x). В таких случаях говорят, что уравнение p(x; y) = 0 с двумя переменными разрешено относительно переменной у.

Пример 1 Построить график уравнения: a) $y + x^2 = 0$; б) xy = 3; B) $y - \sqrt{x+1} - 2 = 0$.

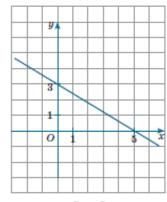
Puc. 1

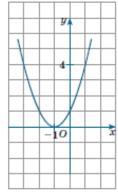
ART 2.7. a)
$$(\sqrt{x} - y)(y - x^2) = 0$$
;
6) $(|x| + y - 2)(xy - 2y - 4) = 0$;
B) $(|x + 1| - y - 2)(\sqrt{x} - y) = 0$;
r) $(xy - 6)(y + \sqrt{x}) = 0$;
g) $(2 - 0.5x^2 - y)(y - |x + 2|) = 0$;
e) $(|x| + y + 3)(\sqrt{x} - y - 2) = 0$.

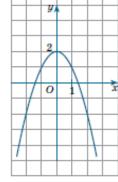
Обогашение математического языка.

Запишите уравнение, график которого изображён на данном рисунке.

2.1. а) Рис. 6;

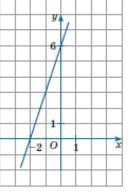

в) рис. 8;

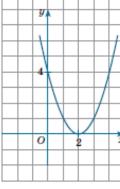

д) рис. 10;

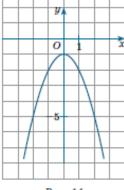

б) рис. 7:

г) рис. 9;

е) рис. 11.






Puc. 6

Puc. 7

Puc. 8

Puc. 9

Puc. 10

Puc. 11

Постройте график уравнения.

2.3. a)
$$4x + 3y = 8$$
; r) $2x + 3y = 9$; 6) $5x - 4y = 20$; g) $7x - 2y = 14$; e) $3x + 4y = 12$.

r)
$$2x + 3y = 9$$

6)
$$5x - 4y = 20$$
;

$$\pi$$
) $7x - 2y = 14$

$$2x + 7y = 21$$

e)
$$3x + 4y = 12$$

Системы уравнений

Обогащение математического языка.

§ 3. Уравнение окружности на координатной плоскости

- 3.2. Из данных трёх точек выберите пару точек, расстояние меж которыми равно 10:
 - a) F(0; -4), H(8; -2) u G(0; 4);
 - 6) K(3; 5), M(-3; -3) и L(5; -3);
 - в) M(5; 4), T(4; -2) и N(-2; -6);
- 3.7. Найдите координаты центра и радиус окружности:

a)
$$(x-2)^2 + (y-3)^2 = 16$$
;
b) $(x+5)^2 + (y+2)^2 = 9$;
c) $(x-7)^2 + (y+1)^2 = 25$;
c) $(x-7)^2 + (y+1)^2 = 49$;
c) $(x-7)^2 + (y+1)^2 = 49$;
c) $(x-7)^2 + (y+1)^2 = 49$;
d) $(x+3)^2 + (y+1)^2 = 49$;
e) $(x+9)^2 + (y-6)^2 = 32$.

r)
$$(x-7)^2 + (y-1)^2 = 25$$
;

6)
$$(x + 5)^2 + (y + 2)^2 = 9$$
;

$$\pi(x+3)^2 + (y+10)^2 = 4$$

B)
$$(x-7)^2 + (y+4)^2 = 18$$
:

e)
$$(x + 9)^2 + (y - 6)^2 = 32$$
.

Постройте график уравнения.

3.8. a)
$$x^2 + y^2 = 4$$
:

r)
$$x^2 + y^2 = 9$$
;

6)
$$(x-2)^2 + (y-1)^2 = 25$$

6)
$$(x-2)^2 + (y-1)^2 = 25$$
; π) $(x-1)^2 + (y-3)^2 = 16$;

B)
$$(x-4)^2 + (y+2)^2 = 1$$
;

e)
$$(x + 5)^2 + (y - 1)^2 = 36$$
.

- 3.12. Составьте уравнение окружности:
 - а) с центром в точке (-3; -4), касающейся оси Oy;
 - б) с центром в точке (9; -12), проходящей через начало коорди-
 - в) с центром в точке (2; -3), проходящей через точку (1; -1);
 - Γ) с центром в точке (4; 5), касающейся оси Ox;
 - д) с центром в точке (5; -12), проходящей через начало коорди-
 - е) с центром в точке (-3; 4), проходящей через точку (-1; 1).
- 3.16. Найдите координаты точек пересечения прямой и окружности:

a)
$$y = 0$$
 if $(x - 1)^2 + (y - 4)^2 = 16$;

6)
$$x = 2 \text{ if } (x - 2)^2 + (y + 4)^2 = 4$$
:

B)
$$y = -5 \text{ H } (x+1)^2 + (y+5)^2 = 25$$
;

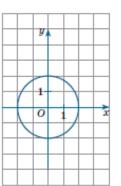
r)
$$x = 0$$
 u $(x + 3)^2 + (y - 1)^2 = 9$;

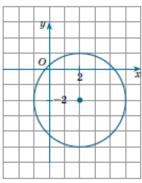
д)
$$y = 3$$
 и $(x - 5)^2 + (y - 3)^2 = 16$;

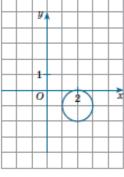
e)
$$x = -4 \text{ is } (x + 4)^2 + (y - 6)^2 = 36.$$

ИКТ 3.18. Постройте полуокружность:

a)
$$y = \sqrt{9 - x^2}$$
;

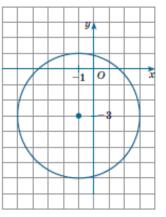

r)
$$y = \sqrt{16 - x^2}$$
;

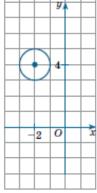

6)
$$y = -\sqrt{25 - (x - 3)^2}$$

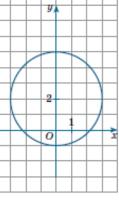

a)
$$y = \sqrt{9 - x^2}$$
; r) $y = \sqrt{16 - x^2}$;
6) $y = -\sqrt{25 - (x - 3)^2}$; $y = \sqrt{36 - (x + 1)^2}$; $y = \sqrt{24 - x^2 - 2x}$; e) $y = 1 - \sqrt{5 - x^2 + 4x}$.

B)
$$y = \sqrt{24 - x^2 - 2x}$$
;

e)
$$y = 1 - \sqrt{5 - x^2 + 4x}$$
.







Puc. 23

Puc. 24

Puc. 26

Puc. 27

Puc. 28

Обогащение математического языка.

Системы уравнений

A. E. Mopgessen, Cl. E. Consuce, J. A. Annecenggeon, E. R. Mopgessen **АЛГЕБРА**

§ 4. Основные понятия, связанные с системами двух уравнений с двумя переменными

 а) Какая из данных пар чисел (1; -2), (-1; 2), (2; -1) является решением системы уравнений

$$\begin{cases} x^2 + y^2 = 5, \\ x + 2y = -3? \end{cases}$$

б) Какая из данных пар чисел (-3; 1), (3; -1), (1; -3) является решением системы уравнений

$$\begin{vmatrix} x^2 + y^2 = 10, \\ |x - 3| + y = -15 \end{vmatrix}$$

Решите систему уравнений.

$$\begin{cases} x = 1, \\ x^2 - 2y = -3; \end{cases}$$

r)
$$\begin{cases} y = 4, \\ x^2 + y = 5 \end{cases}$$

$$\begin{cases} x^2 + y = 2 \\ 2x - y = 1 \end{cases}$$

$$\begin{cases} x^2 - y = 7, \\ 2x - 3y = 0 \end{cases}$$

$$\begin{cases} xy = 4, \\ 2x - y = 2 \end{cases}$$

e)
$$\begin{cases} xy = 6, \\ x - 2y + 4 = 0 \end{cases}$$

ИКТ 4.7. При каком значении параметра р пара чисел (-1; 2) является решением системы уравнений:

a)
$$\begin{cases} p^2x - y = -6, \\ x^2 + y^2 = p + 3. \end{cases}$$

a)
$$\begin{cases} p^2x - y = -6, \\ x^2 + y^2 = p + 3; \end{cases}$$
 6)
$$\begin{cases} p^2x + 2py = 3, \\ (x - 1)^2 + (y - 2)^2 = 3p + 1? \end{cases}$$

икт 4.8. При каком значении параметра p система уравнений имеет единственное решение:

a)
$$\begin{cases} x^2 - y - 2 = 0 \\ px + y = -2; \end{cases}$$

a)
$$\begin{cases} x^2 - y - 2 = 0, \\ px + y = -2; \end{cases}$$
 6)
$$\begin{cases} px - y + 3 = 0, \\ (x - 2)^2 - y + 3 = 0? \end{cases}$$

С системами двух уравнений с двумя переменными вы впервые познакомились в курсе алгебры 7-го класса. Правда, там мы ограничивались только линейными уравнениями. В этой главе мы будем говорить о системах уравнений с самых общих позиций.

Определение 1. Если поставлена задача найти все пары чисел (x; y), которые одновременно удовлетворяют уравнению p(x; y) = 0и уравнению q(x; y) = 0, то говорят, что указанные уравнения об-

разуют систему уравнений $\begin{cases} p(x; y) = 0, \\ q(x; y) = 0. \end{cases}$ Пару чисел (x; y), которая

одновременно является решением и первого, и второго уравнений системы, называют решением системы уравнений.

Решить систему уравнений — значит найти все её решения или установить, что решений нет.

Например, пара (2; 5) — решение системы уравнений $\begin{cases} xy=10, \\ y^2-x^2=21. \end{cases}$

В самом деле, эта пара удовлетворяет как первому, так и второму уравнению системы, значит, является её решением. Навскидку можно указать ещё одно решение: (-2; -5). Не исключено, что есть и другие решения, но так это или нет, мы сможем выяснить только в следующем параграфе. А вот пар, не являющихся решением системы, можно придумать сколько угодно, например (1; 3); эта пара не удовлетворяет ни первому, ни второму уравнению системы. Ещё один пример: (2,5; 4); эта пара — решение первого уравнения системы, но не удовлетворяет второму уравнению. Значит, решением системы она не является. Придумайте сами ещё несколько пар, не являющихся решением системы.

Переменные в уравнениях, образующих систему уравнений, могут быть обозначены и другими буквами, чаще всего латинского (a и b, s и t, и и v и т. д.) или другого (греческого, русского и т. д.) алфавита. При записи ответа в виде пары чисел на первое место ставят ту из двух букв, которая в соответствующем алфавите встречается раньше.

В § 1 мы ввели понятие равносильности для уравнений с двумя переменными. Теперь введём понятие равносильности для систем уравнений.

Системы уравнений

§ 5. Решение систем уравнений методом подстановки

Решите систему уравнений методом подстановки.

5.1. a)
$$\begin{cases} y = x - 8, \\ x^2 + 2y = 32; \end{cases}$$

r)
$$\begin{cases} x = y + 5, \\ x^2 - 3y = 13; \end{cases}$$

$$\begin{cases} x = y^2, \\ x + y = 12; \end{cases}$$

$$\exists y = x^2, \\
x - y = -12;$$

$$y = x^2 + 1,$$
 $y + 2x = 1$

(e)
$$\begin{cases} x = y^2 - 2, \\ x + 2y = 2. \end{cases}$$

5.4. a)
$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{5}{6}, \\ 2y - x = 1; \end{cases}$$

r)
$$\begin{cases} \frac{5}{2y} - \frac{1}{x} = \frac{1}{3} \\ x - y = -1; \end{cases}$$

$$\begin{vmatrix}
2x - y &= 3, \\
-\frac{1}{2y} + \frac{1}{4x} &= \frac{2}{3};
\end{vmatrix}$$

$$A)\begin{cases} 6x - y = 5, \\ \frac{1}{x} + \frac{9}{4y} = 3\frac{1}{4}; \end{cases}$$

B)
$$\begin{cases} \frac{5}{x} + \frac{4}{y} = 2 + \frac{12}{xy}, \\ x - y = 3; \end{cases}$$
 e)
$$\begin{cases} \frac{4}{x} + \frac{3}{y} = 1 + \frac{12}{xy}, \\ x - y = 1. \end{cases}$$

$$\begin{cases} \frac{4}{x} + \frac{3}{y} = 1 + \frac{12}{xy} \\ x - y = 1. \end{cases}$$

5.8. a)
$$3x - 2y - z = -4$$
$$2x + y + z = 6,$$
$$x - y + 2z = 1$$

r)
$$\begin{cases} x - 3y - z = 5, \\ 2x + y + 3z = 3, \\ 3x + 2y + z = 4; \end{cases}$$

$$3x - 2y + z = -5,$$

$$x + 2y - z = -3,$$

$$2x + 3y + 2z = -2.$$

$$\begin{cases} x + 2y - z = -1 \\ 2x + y + 2z = 4, \\ x - y + 2z = 3; \end{cases}$$

$$\begin{cases} 2x + 2y - z = 0, \\ x + y - z = -1, \\ x - 2y + z = -3. \end{cases}$$

Обогащение математического языка.

Метод подстановки мы применяли в 7-м классе для решения систем линейных уравнений, где сформулировали алгоритм применения метода подстановки для решения систем уравнений. Этот алгоритм вполне пригоден для решения систем любых уравнений, необязательно линейных.

Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными x, y

- Выразить у через х из одного уравнения системы.
- Подставить полученное выражение вместо у в другое уравнение
- Решить полученное уравнение относительно x.
- Подставить каждый из найденных на третьем шаге корней уравнения поочерёдно вместо х в выражение у через х, полученное
- Записать ответ в виде пар значений (x; y), которые были найдены соответственно на третьем и четвёртом шаге.

Переменные х и у равноправны, поэтому на первом шаге алгоритма можно выразить из одного уравнения не у через х, а х через у. Просто нужно выбрать то уравнение, которое кажется более простым, и выразить из него ту переменную, для которой эта процедура будет более простой.

- 5.10. а) Сумма двух чисел равна 44, а сумма их квадратов 986. Най
 - б) Разность двух натуральных чисел равна 6, а их произведение 775. Найдите эти числа.
- 5.11. а) Найдите двузначное число, которое в 4 раза больше суммы своих цифр и в 3 раза больше произведения цифр.
 - б) Задумано двузначное число, сумма цифр которого равна 11. Если к задуманному числу прибавить 9, то получится число, записанное теми же цифрами, но в обратном порядке. Найдите задуманное число.

АЛГЕБРА

Готовность обучающихся к изучению систематических курсов алгебры и геометрии

Необходимые и достаточные условия

- 1. Наличие у обучающихся соответствующих предметных знаний для изучения алгебры и геометрии
- 2. Наличие опыта работы с аналогичными моделями на предшествующих уровнях.
- 3. Наличие у обучающихся потребности в переходе на новый уровень изучения предмета.

Присутствуют ли эти условия в начале изучения курса алгебры в 7-м классе?

- достаточны предметные знания $c \phi o p м u p o в a ны л u в ы ч u c л u m e л ь ны e н a в ы к u в$ должном объёме, сформирован ли навык чтения и анализа математического текста?
- должный опыт решали ли достаточно задач арифметическим способом?
- сформированы потребности нужен ли учащимся новый аппарат для решения 30,004?

способ максимального предположения

используется в задачах, в которых известно, что получится в результате двух разных случаев и необходимо найти исходные условия. Метод заключается в том, что допускается выполнение одного из случаев (обычно максимально возможного) и путём вычитания несостоявшихся случаев находится ответ на вопрос задачи.

Задача 1.

Для перевозки 40 зеркал наняли извозчика с условием, что за доставку каждого зеркала он получит 20 р., а за каждое разбитое в дороге зеркало он должен будет заплатить 100 р. Извозчик несколько зеркал разбил при расчёте получил 440 р. Сколько целых зеркал он доставил?

Решение.

- 1) Допустим доставлены все зеркала, тогда получено: $40 \cdot 20 = 800$ (р.);
- 2) За одно недоставленное зеркало теряется: 100 + 20 = 120 (р.);
- 3) Поскольку извозчик получил 440 руб., то потерял он: 800 440 = 360 (р.);
- 4) Следовательно, разбито: 360 : 120 = 3 (зеркала);
- 5) Доставлено в целости: 40 3 = 37 (зеркал).

Ответ. 37 зеркал.

способ «с конца»

используется в задачах, в которых известен результат и порядок действий, и необходимо найти начальные условия. Метод заключается в том, что на вопрос задачи можно ответить, выполнив действия в обратном порядке

Задача 2.

Медведь с базара плюшки нес, Но на лесной опушке Он половину плюшек съел И плюс еще полплюшки.

Шел, шел, уселся отдохнуть И под «ку-ку» кукушки Вновь половину плюшек съел И плюс еще полплюшки.

Стемнело, он ускорил шаг, Но на крыльце избушки Он снова пол-остатка съел И плюс еще полплюшки.

С пустой кошелкою – увы! Он в дом вошел уныло... Хочу, чтоб мне сказали вы, А сколько плюшек было?

Решение.

	Присел 1-й раз	Присел 2-й раз	Присел 3-й раз
Было	7 плюшек	3 плюшки	1 плюшка
Осталось бы, если бы он не съедал полплюшки	3 плюшки и ещё полплюшки	1 плюшка и ещё полплюшки	полплюшки
Осталось	3 плюшки	1 плюшка	нет плюшек

Ответ. 7 плюшек.

способ пропорционального изменения

используется в задачах, в которых входят величины, связанные прямой или обратной пропорциональной зависимостью. Метод заключается в том, что для нахождение одной неизвестной величины, известная уменьшается или увеличивается в определённое число раз.

Задача 3.

Для исполнения некоторый работы 24 человека должны работать ежедневно по 10 часов. По сколько часов должны работать 40 человек, чтобы выполнить эту же работу?

Решение.

- 1) Для выполнения всей работы надо затратить: $24 \cdot 10 = 240$ (чел. час.);
- 2) По сколько часов должны работать 40 человек, чтобы затратить 240 часов: 240:40=6 (час.);

Ответ. 6 час.

Способ ложных положений

используется в задачах, которых спрашивается найти число x, удовлетворяющее уравнению ax + b = c. Числа a, b и c заданы b условии

- 1. Сделать первое предположение, вычислить возможный при этом результат. Сравнить полученный результат с данными задачи и найти разницу первое отклонение.
- 2. Сделать второе предположение, вычислить возможный при этом результат. Сравнить полученный результат с данными задачи и найти разницу второе отклонение.
- 3. Если оба результата одновременно больше или меньше необходимого в условии, то искомое данное находится следующим образом: Первое предположение умножить на второе отклонение, второе предположение умножить на первое отклонение и от большего произведения вычесть меньшее. Разделить полученную разность на разность отклонений.
- 4. Если при одном предположении результат получается больше необходимого, а при втором— меньше, то искомое данное находится следующим образом: Первое предположение умножить на второе отклонение, второе предположение умножить на первое отклонение. Полученные произведения сложить, разделить полученную сумму на сумму отклонений.

Задача 4. Летит стая гусей, а на встречу ей один гусь: «Здравствуйте, сто гусей!». Отвечает ему вожак: «Нас не сто. Вот если бы нас было столько, сколько есть, да еще столько, да пол столько, да четверть столько, да ты с нами, то тогда нас было бы сто».

Сколько было гусей в стае?

Решение.

- 1) Пусть в стае 24 гуся, тогда всего: 24 + 24 + 12 + 6 + 1 = 67 (гусей);
- 2) Пусть в стае 48 гусей, тогда всего: 48 + 48 + 24 + 12 + 1 = 133 (гуся);
- 3) 24 первое предположение, 33 первое отклонение; 48 второе предположение, 33 второе отклонение;
- 4) $(24 \cdot 33 + 48 \cdot 33) : (33 + 33) = 36$ (гусей).

Ответ. 36 гусей.

способ ложных положений

Пример 1 В одной корзине имеются яблоки, в другой — груши. Число яблок в два раза больше числа груш. Когда из первой корзины взяли 2 яблока, а во вторую корзину добавили 7 груш, яблок и груш стало поровну. Сколько всего фруктов было в корзинах вначале?

Решение.

- 1) Пусть в одной корзине 10 яблок, тогда груш 5, после изменений станет 8 яблок и 12 груш, то есть яблок станет на 4 меньше, чем по условию;
- 2) Пусть в одной корзине 14 яблок, тогда груш -7, после изменений станет 12 яблок и 14 груш, то есть яблок станет на 2 меньше, чем по условию;
- 3) 10 первое предположение, 4 первое отклонение; 14 второе предположение, 2 второе отклонение;
- 4) $(10 \cdot 2 14 \cdot 4) : (2 4) = 18 (шт.) яблок;$
- 5) 18:2=9 (шт.) груш.

Ответ. 18 яблок; 9 груш.

способ ложных положений

5.9. В школе 900 учащихся. Сколько учащихся в начальных, средних и старших классах, если известно, что в начальных классах их в 3 раза больше, чем в старших, и в 2 раза меньше, чем в средних?

Решение.

- 1) Пусть в начальных классах 300 учащихся, тогда в старших классах 100, а в средних 600. Всего получается 300 + 100 + 600 = 1000, то есть на 100 больше, чем по условию;
- 2) Пусть в начальных классах 240 учащихся, тогда в старших классах -80, а в средних -480. Всего получается 240 + 80 + 480 = 800, то есть на 100 меньше, чем по условию;
- 3) 300 первое предположение, 100 первое отклонение; 240 второе предположение, 100 второе отклонение;
- 4) $(300 \cdot 100 + 240 \cdot 100) : (100 + 100) = 270$ (уч.).
- 5) $270: 3 = 90 \text{ (уч.)}; 270 \cdot 2 = 540 \text{ (уч.)}$

Ответ. 270; 540; 90 учащихся.

Запутанный метод?

Давайте поищем другой!

Алгебраический!

АЛГЕБРА КЛАСС

§ 4. Понятие о математических моделях

Пример 1 В одной корзине имеются яблоки, в другой — груши. Число яблок в два раза больше числа груш. Когда из первой корзины взяли 2 яблока, а во вторую корзину добавили 7 груш, яблок и груш стало поровну. Сколько всего фруктов было в корзинах вначале?

Решение. Пусть x — число груш во второй корзине, тогда 2x — число яблок.

Если взять 2 яблока, то в первой корзине останется (2x-2) яблока. Если добавить 7 груш, то во второй корзине станет (x+7) груш. По условию после этого яблок и груш будет поровну; на математическом языке это записывается так: 2x-2-x+7.

Это уравнение — математическая модель задачи. Решим уравнение:

$$(2x-2)-(x+7)-0;$$

 $2x-2-x-7-0;$
 $x-9-0;$
 $x-9.$

Теперь мы можем ответить на вопрос задачи. Груш было 9, а значит, яблок (их вдвое больше) было 18. А всего фруктов в обеих корзинах было 27 штук.

5.11. Поезд прошёл первый перегон за 2 ч, а второй — за 3 ч. Всего за это время он прошёл расстояние 330 км. Найдите скорость поезда на каждом перегоне, если на втором перегоне она была на 10 км/ч больше, чем на первом.

Решение (способ ложных положений).

- 1) Пусть на первом перегоне скорость поезда была 50 км/ч, тогда на втором -60 км/ч. Поезд прошёл $50 \cdot 2 + 60 \cdot 3 = 280$ км, это на 50 км меньше, чем должно было получиться;
- 2) Пусть на первом перегоне скорость поезда была 70 км/ч, тогда на втором -80 км/ч. Поезд прошёл $70 \cdot 2 + 80 \cdot 3 = 380$ км, это на 50 км больше, чем должно было получиться;
- 3) 50 первое предположение, 50 первое отклонение; 70 второе предположение, 50 второе отклонение;
- 4) $(50 \cdot 50 + 70 \cdot 50) : (50 + 50) = 60 (\text{KM/y}).$

Ответ. 60 км/ч, 70 км/ч.

Решение (алгебраический метод).

Пусть x км/ч скорость поезда на первом перегоне, тогда (x+10) км/ч — скорость на втором перегоне.

2x км — протяжённость первого перегона; 3(x+10) км — протяжённость второго перегона.

2x + 3(x + 10) – всё расстояние, что по условию равно 330 км. Получаем уравнение:

$$2x + 3(x + 10) = 330;$$

 $5x = 300;$
 $x = 60.$

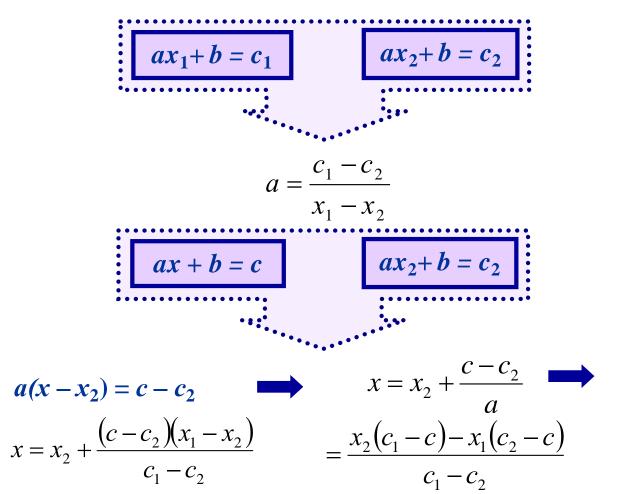
60 км/ч - скорость поезда на первом перегоне, <math>60 + 10 = 70 км/ч - скорость на втором перегоне.

Ответ. 60 км/ч, 70 км/ч.

<u>Дано</u>:

Решение:

• Возьмем некоторое число x_1

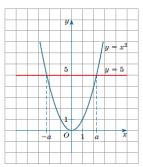

неизвестная величина удовлетворяет уравнению ax + b = c

• Получим $ax_1 + b = c_1$

Найти: х

- Возьмем некоторое число x_2
- Получим $ax_2 + b = c_2$

Глава 1


Множество действительных чисел

Обогащение математического языка.

§ 4. Познакомимся с квадратными корнями

Рассмотрим два похожих друг на друга уравнения: $x^2=4$, $x^2=5$. Первое уравнение мы решим без труда, его корнями служат числа 2 и -2. Второе уравнение попробуем решить графически. Для этого в одной системе координат построим график функции $y=x^2$ (параболу) и прямую y=5 (рис. 7). Они пересекаются в двух симметричных от-

25

Puc. 7

носительно оси ординат точках (a; 5) и (-a; 5). Но что это за положительное число a? Пока ясно лишь, что 2 < a < 3 и $a^2 = 5$.

Между числами 2 и 3 находится бесконечно много рациональных чисел. Может быть, одно из них, будучи возведено в квадрат, как раз и даст нам число 5?

Итак, предположим, что существует рациональное число, т. е. обыкновенная дробь $\frac{p}{a}$ такая, что $\left(\frac{p}{a}\right)^2 = 5$. Числитель p и знамена-

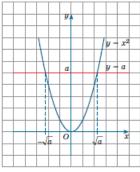
ү (q) тель q не имеют общих множителей, отличных от 1, поскольку мы бы их заранее сократили. Тогда числа p^2 и q^2 также не имеют общих мно-

жителей. Получается, что дробь $\frac{p^2}{q^2} = \left(\frac{p}{q}\right)^2$ несократима и поэтому не

может равняться натуральному числу, в частности не может равняться 5.

Метод доказательства, который мы применили только что, называют в математике методом доказательства от противного. Суть его в следующем. Нам нужно доказать некоторое утверждение, а мы педполагаем, что оно не выполняется (принято говорить так: «предположим противное»). Если в результате правильных рассуждений приходим к противоречию с предположением, то делаем вы-

вод: наше предположение неверно, значит, верно то, что требовадось доказать.


Что же получается? Получается, что у уравнения $x^2=5$ корни есть, но они не являются рациональными числами, это числа новой природы. Для обозначения этих корней используется новый математический символ $\sqrt{}$ и корни уравнения $x^2=5$ записывают так: $x_1=\sqrt{5},\ x_2=-\sqrt{5}$. Символ $\sqrt{5}$ читают так: «квадратный корень из

Аналогично обстоит дело с уравнением $x^2 = 2$, его корнями являются числа $x_1 = \sqrt{2}$, $x_2 = -\sqrt{2}$.

Теперь для любого уравнения вида $x^2=a$, где a>0, можно записать корни: $x_1=\sqrt{a}$, $x_2=-\sqrt{a}$ (рис. 8).

А уравнение $x^2 = 0$ имеет единственный корень 0, т. е. можно записать так; $\sqrt{0} = 0$.

Определение. Квадратным корнем из неотрицательного числа a называют такое неотрицательное число, квадрат которого равен a. Это число обозначают \sqrt{a} , число a при этом называют подкоренным числом. Операцию нахождения квадратного корня из неотридательного числа называют извлечением квадратного кория.

Puc. 8

27

Итак, если a — неотрицательное число, то $\sqrt{a} \geqslant 0$ и $(\sqrt{a})^2 = a$. Например,

$$\sqrt{36} = 6$$
, так как $6 \ge 0$ и $6^2 = 36$;

$$\sqrt{625}$$
 = 25, так как 25 \geq 0 и 25² = 625;

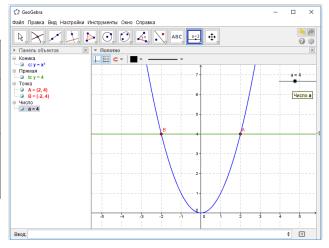
$$\sqrt{3,24} = 1,8$$
, так как $1,8 \ge 0$ и $1,8^2 = 3,24$;

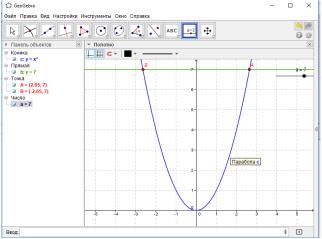
$$\sqrt{\frac{16}{81}} = \frac{4}{9}$$
, так как $\frac{4}{9} \ge 0$ и $\left(\frac{4}{9}\right)^2 = \frac{16}{81}$.

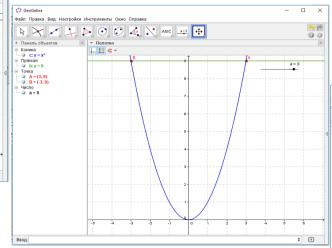
А как вычислить √5? Ведь нет натурального числа, квадрат которого равен 5, нет и обыкновенной дроби, при возведении которой в квадрат получится 5. Об этом мы поговорим в §5.

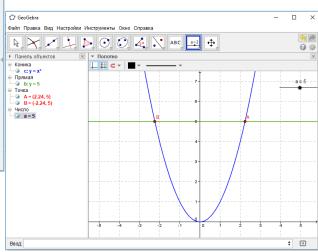
План-схема урока по теме «Познакомимся с квадратными корнями»

Урок «открытия» нового знания	Деятельность на уроке				
Проверка домашнего задания,	Повторяются: графический способ решения				
актуализация знаний.	уравнений, построение графика функции $y = x^2$.				
Мотивация открытия нового	Постановка задачи: решите уравнения				
знания. Побуждение к получению	$x^2 = 4$ и $x^2 = 5$.				
новой информации.	Приём «Верю – проверю»				
Получение новой информации	Работа с текстом учебника. Заполнение журнала.				
Первичное закрепление с	Решение заданий в группах.				
проговариванием во внешней речи.	. Закрепление нового понятия.				
	Составление схемы определения понятия				
	квадратного корня.				
	Составление схемы доказательства.				
Самостоятельная работа с	Выполнение самостоятельной работы				
самопроверкой по эталону.					
Рефлексия. Осмысление	Подведение к выводу: раз мы узнали новый вид				
изученного и сделанного	числа, то следует его подробно изучить –				
	свойства, расположение на числовой оси,				
	взаимоотношение с уже известными				
	рациональными числами.				
Информация о домашнем задании,					
инструктаж по его выполнению.					




Побуждение к получению новой информации


Приём «Верю – проверю»



Верю	Вопрос	Проверю
Да	Уравнение $\chi^2 = 4$ имеет корни.	
Нет	Уравнение $x^2 = 5$ имеет корни.	

Получение новой информации

Что же получается? Получается, что у уравнения $x^2=5$ корни есть, но они не являются рациональными числами, это числа новой природы. Для обозначения этих корней используется новый математический символ $\sqrt{}$ и корни уравнения $x^2=5$ записывают так: $x_1=\sqrt{5},\ x_2=-\sqrt{5}$. Символ $\sqrt{5}$ читают так: «квадратный корень из пяти».

Аналогично обстоит дело с уравнением $x^2 = 2$, его корнями являются числа $x_1 = \sqrt{2}$, $x_2 = -\sqrt{2}$.

Теперь для любого уравнения вида $x^2=a$, где a>0, можно записать корни: $x_1=\sqrt{a},\ x_2=-\sqrt{a}$ (рис. 8).

А уравнение $x^2 = 0$ имеет единственный корень 0, т. е. можно записать так: $\sqrt{0} = 0$.

Определение. Квадратным корнем из неотрицательного числа a называют такое неотрицательное число, квадрат которого равен a. Это число обозначают \sqrt{a} , число a при этом называют подкоренным числом. Операцию нахождения квадратного корня из неотрицательного числа называют извлечением квадратного корня.

Составление схемы определения понятия

Корень квадратный из неотрицательного числа a:

1) Неотрицательное число и
2) Квадрат этого числа равен a.

Квадратный корень из неотрицательного числа aПоказатель корня (2 не пишется) $\sqrt{a} \ge 0$, $(\sqrt{a})^2 = a$, $a \ge 0$

Получение новой информации

ИКТ Между числами 2 и 3 находится бесконечно много рациональных чисел. Может быть, одно из них, будучи возведено в квадрат, как раз и даст нам число 5?

Итак, предположим, что существует рациональное число, т. е.

обыкновенная дробь $\frac{p}{q}$ такая, что $\left(\frac{p}{q}\right)^2=5.$ Числитель p и знамена-

тель q не имеют общих множителей, отличных от 1, поскольку мы бы их заранее сократили. Тогда числа p^2 и q^2 также не имеют общих мно-

жителей. Получается, что дробь $\frac{p^2}{q^2} = \left(\frac{p}{q}\right)^2$ несократима и поэтому не

может равняться натуральному числу, в частности не может равняться 5.

Составление схемы определения понятия

- 1. Пусть $\frac{p}{q}$ рациональное число; $\left(\frac{p}{q}\right)^2 = 5$.
- 2. p, q не имеют общих делителей.
- p^2 , q^2 не имеют общих делителей.
- 4. $\frac{p^2}{q^2} = \left(\frac{p}{q}\right)^2$ несократима. Противоречие с п.1.

Глава 1

Системы уравнений

§ 5. Решение систем уравнений методом подстановки

Пример 1 Решить систему уравнений:

a)
$$\begin{cases} y - 2x = 5, \\ x^2 + xy = 8; \end{cases}$$

6)
$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{5}{6}, \\ 2y - x = 1. \end{cases}$$

- 1. Выразим y через x из первого уравнения системы;
- 2. Подставим полученное выражение вместо *у* во второе уравнение системы;
- 3. Решим второе уравнение системы;
- 4. Подставим найденное значение x в выражение для y.
- 5. Запишем ответ.

Составление предписания по решению задач определённого вида

Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными x, y

- **1.** Выразить y через x из одного уравнения системы.
- 2. Подставить полученное выражение вместо y в другое уравнение системы.
- **3.** Решить полученное уравнение относительно x.
- 4. Подставить каждый из найденных на третьем шаге корней уравнения поочерёдно вместо x в выражение y через x, полученное на первом шаге.
- 5. Записать ответ в виде пар значений (x; y), которые были найдены соответственно на третьем и четвёртом шаге.

Решение. а) Выразим y через x из первого уравнения системы: y = 2x + 5.

Подставим выражение 2x + 5 вместо y во второе уравнение системы:

$$x^2 + x(2x + 5) = 8;$$

 $3x^2 + 5x - 8 = 0.$

Один корень полученного квадратного уравнения легко угадывается: $x_1 = 1$. Второй корень найдём с помощью теоремы Виета, которую мы изучали в курсе алгебры 8-го класса: корни x_1 , x_2 квадратно-

го уравнения $ax^2 + bx + c = 0$ удовлетворяют соотношению $x_1x_2 = \frac{c}{a}$.

Для уравнения $3x^2 + 5x - 8 = 0$ получаем: $x_1x_2 = \frac{-8}{3}$; $1 \cdot x_2 = -\frac{8}{3}$;

$$x_2 = -\frac{8}{3}$$
. Итак, либо $x = 1$, либо $x = -\frac{8}{3}$.

Если x=1, то $y=2x+5=2\cdot 1+5=7$; если $x=-\frac{8}{3}$, то $y=2x+5=2\cdot \left(-\frac{8}{3}\right)+5=-\frac{1}{3}$.

Итак, система имеет два решения: (1; 7), $\left(-\frac{8}{3}; -\frac{1}{3}\right)$.

Глава 1 Системы уравнений

Структурирование больших объёмов материала

Графический метод решения

Метод подстановки

Системы уравнение с двумя переменными

Метод сложения

Метод замены переменной

Авторский коллектив

Александр Григорьевич Мордкович

профессор МГПУ, доктор педагогических наук, кандидат физико-математических наук, научный руководитель Международного семинара преподавателей математики педвузов (1987 г-н.в.);

<u>имеет награды</u>: Премия Президента РФ в области образования, заслуженный деятель науки РФ, Отличник народного образования, Медаль К.Д.Ушинского.

Павел Владимирович Семёнов

профессор факультета математики НИУ ВШЭ, доктор физико-математических наук, профессор, член Федеральной предметной группы по разработке КИМ для ЕГЭ по математике (2001-2007 гг), разработчик заданий с развернутым ответом, автор более 20 учебнометодических пособий по подготовке учащихся к ЕГЭ и подготовке экспертов к проверке работ учащихся;

<u>имеет награды</u>: Почётный работник высшего профессионального образования РФ; Почетная грамота Министерства образования РФ.

Лидия Александровна Александрова

учитель математики, методист ГБОУ Школы 1317 г. Москва, учитель высшей категории, член предметной комиссии по проверке выполнения заданий с развернутым ответом экзаменационных работ ЕГЭ по математике;

имеет награды: Отличник народного просвещения РФ.

заведующий лабораторией математики ГК «Просвещение», кандидат педагогических наук, доцент, председатель предметной комиссии ЕГЭ по математике Московской области (2006-2007 гг); член-корреспондент Международной академии научного педагогического образования (МАНПО); имеет награды: Грант Москвы в сфере образования; Почётная грамота Министерства образования Московской области.

Отличительные особенности УМК «Лаборатория А.Г. Мордковича»

Курс построен на основе приоритетности функционально-графической линии, математическое моделирование является идейным стержнем.

Учебник и задачник соединены в одну книгу.

Порядок тем соответствует ПООП, отражает психологические особенности обучающихся.

Выстроена вероятностно-стохастическая линия в тесной взаимосвязи с основным содержанием.

Каждая глава содержит разделы «Повторение», «Итак, в Главе...», «Вопросы», «Дополнительные задачи», «Из истории математики».

Трёхуровневая система заданий отражает требования ФГОС ОО, итоговой аттестации. Добавлены задачи практического содержания, высокого уровня сложности.

Включён материал, рекомендованный к изучению с использованием ІТ-средств.

Алгебра, 7-9 классы Алгебра и начала математического анализа, 10-11 классы

- > Учебники
- > ЭФУ
- > Примерные рабочие программы
- Методические пособия для учителя
- > Рабочие тетради
- ➤ Контрольные работы
- > Самостоятельные и проверочные работы
- > Алгебраические практикумы

Включены в Федеральный перечень

АЛГЕБРАИЧЕСКИЙПРАКТИКУМ

АЛГЕБРА

АЛГЕБРА

класс

АЛГЕБРА

РАБОЧАЯ ТЕТРАДЬ

БРА

•

Ориентация на результат. Повышение ІТ-компетенций.

Упражнения располагаются от простого к высокому, трёх уровней сложности:

базового, повышенного, высокого.

- **1.6.** а) При каких значениях параметра a пара чисел (-2; 1) является решением уравнения $ax^2 + a^2y = 5$?
 - б) При каких значениях параметров p и q пара чисел (1; -2) является решением каждого из данных уравнений px + 2u = q и 4x + qy = 2p?

Найдите целочисленные решения уравнения.

1.7. a)
$$3x + 2y = 7$$
;

$$r) 3x - 2y = 7;$$

6)
$$4x - 5y = 19$$
;

д)
$$3x - 5y = 13$$
;

B)
$$7x - 3y = 10$$
;

e)
$$5x + 7y = 3$$
.

1.8. a)
$$9x^2 - 4y^2 = 5$$
;

$$r) x^2 - 9y^2 = 7;$$

6)
$$xy = 2x + y$$
;

д)
$$xy - 2y = 3x$$
;

B)
$$2x^2 + xy - y^2 = 5$$
:

б)
$$xy = 2x + y$$
; д) $xy - 2y = 3x$; в) $2x^2 + xy - y^2 = 5$; е) $3x^2 - 2xy = y^2 - 5$.

- 1.9. а) Найдите двузначное число, которое в 6 раз больше суммы своих цифр.
 - б) Найдите двузначное число, которое равно сумме утроенного числа десятков и квадрата единиц.

1.2. Укажите пары чисел, которые являются решением уравнения
$$(x-1)^2 - 2u^2 = 1$$
:

a)
$$(1; 2), (-1; 1), (2; 0);$$

B)
$$(6; 2\sqrt{3}), (-3; \sqrt{2}), (7; 3\sqrt{2});$$

e)
$$(-4; -2\sqrt{3}), (1+\sqrt{3}; 1), (3; \sqrt{2}).$$

1.3. Решите уравнение:

a)
$$(x-4)^2 + (y+1)^2 = 0$$
;

6)
$$\sqrt{2x-3} + \sqrt{3y+6} = 0$$
;

B)
$$\sqrt{x-3} + |y^2 - 4| + \sqrt{2z+5} = 0$$
;
F) $(x+3)^2 + (y-2)^2 = 0$;

r)
$$(x + 3)^2 + (y - 2)^2 = 0$$

д)
$$\sqrt{3x+9} + \left|\frac{1}{2}y - 3\right| = 0;$$

e)
$$\sqrt{x^2-9} + \sqrt{3y+6} + |0,3z-3| = 0$$
.

Есть ли среди представленных уравнений пары равносильных уравнений? Назовите их, объясните свой выбор.

1.4. a)
$$4x - 3y = 18$$
, $x = 0.75y + 6$, $y = 6 - 1\frac{1}{2}x$;

6)
$$x^2 + y - 2x + 3 = 0$$
, $y = -2 - (x - 1)^2$, $x = \sqrt{y - 2} + 1$;

B)
$$xy = -6$$
, $y = -\frac{6}{x}$, $xy + 4 = -2$;

r)
$$2x + 3y = 9$$
, $y = 3 - \frac{2}{3}x$, $x = 3 + 1.5y$;

д)
$$x^2 + y - 4x + 2 = 0$$
, $y = (x - 2)^2 + 2$, $x = \sqrt{y - 2} + 2$;

e)
$$xy = 8$$
, $y = \frac{8}{x}$, $xy - 5 = 3$.

1.5. a)
$$\frac{x^2 - 9y^2}{x + 4y} = 0$$
, $x^2 - 9y^2 = 0$, $x - 3y = 0$;

6)
$$\sqrt{3x+y} = 2$$
, $3x + y = 4$, $|3x + y| = 2$;

B)
$$\frac{x^2 + 12xy + 36y^2}{x + 6y} = 0$$
, $x^2 + y^2 + 1 = 0$, $x + 6y = 0$;

Ориентация на результат. Повышение IT-компетенций.

В конце каждого параграфа выделены упражнения для повторения

Упражнения для повторения

3.22. Решите систему линейных уравнений:

a)
$$\begin{cases} 2x - 3y = -3, \\ x - 3y = -9; \end{cases}$$
 B)
$$\begin{cases} -7x + 4y = 9, \\ 3x - y = -6; \end{cases}$$

$$\begin{cases} -7x + 4y = 9, \\ 3x - y = -6; \end{cases}$$

(a)
$$\begin{cases} 3x + y = -12, \\ 2x - 3y = -8; \end{cases}$$
 (b)
$$\begin{cases} 2x + 5y = 42, \\ 3x - y = 12. \end{cases}$$

$$\begin{array}{l}
(x + 5y = 45) \\
(3x - y = 12.)
\end{array}$$

3.23. Расположите числа в порядке возрастания:

a)
$$3, \sqrt{10}, 2\sqrt{3}, \frac{13}{4};$$
 B) $2, \frac{\sqrt{13}}{2}, \sqrt{3}, \frac{18}{11};$

B)
$$2, \frac{\sqrt{13}}{2}, \sqrt{3}, \frac{18}{11};$$

6)
$$-5, -\frac{14}{3}, -2\sqrt{7}, -\sqrt{26};$$
 Γ) $-4\sqrt{3}, -3\sqrt{7}, -5\sqrt{2}, -7.$

$$\Gamma$$
) $-4\sqrt{3}$, $-3\sqrt{7}$, $-5\sqrt{2}$, -7

- **3.24.** а) Дано уравнение $x^2 + 2px 32 = 0$. При каком значении параметра р один из корней уравнения равен 4? Найдите второй корень уравнения.
 - б) Дано уравнение $x^2 5x + p = 0$. При каком значении параметра р один из корней уравнения равен 8? Найдите второй корень уравнения.
- **3.25.** Из города A в город B, находящийся на расстоянии 240 км от A, выехал автобус со скоростью 54 км/ч. Через 40 мин вслед за ним выехал автомобиль со скоростью 90 км/ч. Прибыв в B, автомобиль тотчас повернул обратно. На каком расстоянии от Aавтомобиль на обратном пути встретился с автобусом?

Выделены задания, предназначенные для решения с использованием IT-средств

§ 4. Основные понятия, связанные с системами двух уравнений с двумя переменными

EXECUTE: a)
$$(\sqrt{x} - y)(y - x^2) = 0;$$
 6) $(|x| + y - 2)(xy - 2y - 4) = 0;$

B)
$$(|x+1|-y-2)(\sqrt{x}-y)=0$$
;

$$(xy-6)(y+\sqrt{x})=0$$

г)
$$(xy-6)(y+\sqrt{x})=0$$
;
д) $(2-0.5x^2-y)(y-|x+2|)=0$;

e)
$$(|x| + y + 3)(\sqrt{x} - y - 2) = 0$$
.

Построение индивидуальной образовательной траектории

В конце каждой главы предложен тест для самопроверки и самоконтроля

Тест

- 1. Укажите пару чисел, которая не является решением рационального уравнения xy - 4y = 20.
 - a) (-36; -0.5)

B) (-9; 4)

б) (-16; -1)

- г) (2; -10)
- 2. Укажите пару равносильных уравнений.

a)
$$\frac{x-2y}{5} = 5 \text{ m } x - 2y = 25$$

- б) $(x^2 + y^2)(0,2x + 0,4y + 1) = 0$ и x + 2y = -5
- B) $\frac{x^2 4y^2}{5(x 2y)} = 0$ If $x^2 4y^2 = 0$
- Γ) $(x + 2y)^2 = 25 \text{ M } x + 2y = 5$
- 3. Укажите верные утверждения.
 - 1) Графиком уравнения $x^2 + y^2 = 3$ является окружность с центром в начале координат и радиусом, равным трём.
 - 2) Графиком уравнения 2y + x = 2(y 1) является прямая.
 - 3) Графиком уравнения x + xy = 2 является гипербола.
- **4.** Найдите длину отрезка NQ, если N(-2; 9) и Q(-7; -3).
- **5.** Укажите уравнение окружности с центром в точке (-7; 2) и радиу
 - a) $(x + 7)^2 + (y 2)^2 = 10$
- 6) $(x-7)^2 + (y+2)^2 = 10$
- B) $(x-7)^2 + (y+2)^2 = 100$ F) $(x+7)^2 + (y-2)^2 = 100$
- 6. Найдите расстояние между точками пересечения окружности $(x+2)^2 + y^2 = 25$ и прямой y = -3.
- 7. Укажите системы уравнений, решением которых является пара чисел (-2; -3).
 - a) $\begin{cases} x^2 + y^2 = 13, \\ 2x y = -1 \end{cases}$

В конце каждой главы есть раздел «Дополнительные задачи»

Дополнительные задачи

Постройте график уравнения.

1. a)
$$x + |y| = 0$$
;

$$\mathbf{r)}\ y|x|+\mathbf{1}=\mathbf{0};$$

6)
$$x + |y| = 0$$
;

д)
$$1 - \left| \frac{y}{x} \right| = 0;$$

B)
$$1 - x|y| = 0$$
;

$$e) \left| \frac{x-1}{y} \right| - 2 = 0.$$

2. a)
$$x - \sqrt{y} = 0$$
;

$$\Gamma) y\sqrt{x} + 1 = 0;$$

$$\text{б) } \sqrt{x} + y = 0;$$

д)
$$1 - \sqrt{\frac{x}{y}} = 0$$
;

B)
$$1 - x\sqrt{y} = 0$$
;

e)
$$\frac{\sqrt{y+1}}{x} - 3 = 0$$
.

61

Математика, 5-6 классы Авторы: Н.Б.Истомина, О.П.Горина, Н.Б.Тихонова

Включены в Федеральный перечень

ПОСОБИЕ ДЛЯ УЧИТЕЛЯ

- > Учебники
- > Рабочие тетради
- Тестовые задания
- Методические пособия для учителя
- Пособия для внеурочной деятельности: «Наглядная геометрия», «Учимся решать комбинаторные задачи»

Авторский сайт https://elenamard.jimdo.com

elenamard.jimdofree.com

Об авторском коллективе

Материалы к урокам

Где купить УМК А.Г.Мордковича и др.

Внеурочная деятельность 5-6 классы

Предпрофильная подготовка 7-9 классы

Профильное обучение 10-11 классы

Открытый урок с БИНОМ

ІТ-средства при обучении алгебре: методические рекомендации

Апробация УМК

Очные региональные семинары

Региональные семинары в формате онлайн

Вебинары

Электронные ресурсы

Курсы повышения квалификации

Обратная связь

Лаборатория математики: в помощь учителю

новости!

Приказом Министерства просвещения Российской Федерации от 31 мая 2021 года № 287 утверждён федеральный государственный образовательный стандарт основного общего образования.

Приказ № 287

Сайт Лаборатории математики ГК "Просвещение"

Сайт для учителей математики. Для тех,

Методическая поддержка через сайт издательства http://www.lbz.ru

Каталог

<u>Р</u> Поиск книг

Новинки

<u>Новинки БИНОМ. Лаборатория знаний</u> Новинки БИНОМ Детства

Система «Учусь учиться» Л.Г. Петерсон

<u>Мир открытий</u> <u>Мир деятельности</u> <u>Математика</u>

Дошкольное образование

Раннее развитие
Читаем дома и в детском саду
Книги и тетради Елены Матвеевой
Учимся играя. Книги-игры
Книги Юлии. Даниловой
Школа Натальи Теремковой
Школа развития МАЯК
Книги в дорогу. Досуг для выходных
Развитие речи

<u>Учимся писать</u> Учимся считать. Математика

Мир вокруг нас

<u>Готовимся к школе</u> <u>Программы дошкольного образования</u>

<u>Мир открытий</u> <u>Английский язык</u>

Ступеньки детства

Моя Москва

Учимся читать

Развиваем таланты

Начальная школа

<u>Система «Учусь учиться» Л.Г. Петерсон</u> <u>Лидер-кейс</u>

Система Д.Б.Эльконина-В.В.Давыдова

Система «Гармония» Система Л.В. Занкова

Школа диалога

<u>Информатика</u> Русский язык

Технология

Английский язык

Окружающий мир Риторика Издательство «БИНОМ. Лаборатория знаний»

В разделе Документы публикуются законы, официальные письма, приказы Минобрнауки РФ, образовательные стандарты, примерные основные образовательные программы, рекламные материалы Издательства, официальные документы, информационные письма.

Пользователям сайта: как получить полную информацию о книге

Основой всего нашего сайта является каталог пособий - полную структуру вы видите слева. Зайдя в нужный вам раздел, вы попадаете на подразделы с описанием, ведущие на перечень карточек книг, относящихся к тому или иному УМК. Перейдя по ссылке на карточку книги, вы сможете получить информацию об этом пособии и заказать его в интернет-магазине. Из карточки пособия, с помощью круга-пиктограммы, вы сможете перейти в авторскую мастерскую, скачать программу, методическое пособие, а также ознакомиться с авторскими материалами к урокам, получить возможность принять участие в конкурсах и вебинарах, посмотреть их записи, изучить рекламные листовки Издательства и многое другое.

Новости

24.06.2021 <u>Поздравляем с юбилеем, с 75-летием Льва Элевича Генденштейна!</u>

УВАЖАЕМЫЙ ЛЕВ ЭЛЕВИЧ! С ЮБИЛЕЕМ!

Желаем Вам неиссякаемого вдохновения, крепкого здоровья и удачи во всех Ваших начинаниях! Желаем, чтобы Вы по-прежнему были энергичны и активны, и пусть каждый новый день приносит Вам большие и маленькие адости.

Писть Вани отнения пъдъе задимин всегда паднот затигназа не гаснет а побовь и мензин только пастёт!

Приказ № 766 от 23.12.2020

О внесении изменений в федеральный перечень учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность, утверждённый приказом Министерства просвещения Российской Федерации от 20.05.2020 г. № 254

	ANN MARK					
1.1.2.4.1.11.1	Математика	Истомина Н.Б.,	5	АО «Издательство	Конобеева Т.А.,	До 1 июля
1.1.2.4.1.11.2		Горина О.П.,	6	«Просвещение»	Бондаренко Р.А.,	2025 года
		Тихонова Н.Б.			Кожанова А.П.,	
					Павлова Л.А.	
1.1.2.4.1.3.1	Математика	Петерсон Л.Г.,	5	ООО «БИНОМ.		От 20 мая
1.1.2.4.1.3.2		Дорофеев Г.В.	6	Лаборатория знаний»; АО		2020 года
				«Издательство		№ 254
/				«Просвещение»		
1.1.2.4.2.13.1	Алгебра	Мордкович А.Г.,	7	ООО «БИНОМ.		От 20 мая
1.1.2.4.2.13.2		Семенов П.В.,	8	Лаборатория знаний»; АО		2020 года
1.1.2.4.2.13.3		Александрова Л.А.,	9	«Издательство		№ 254
		Мардахаева Е.Л.		«Просвещение»		
1.1.2.4.2.11.1	Алгебра	Петерсон Л.Г.,	7	ООО «БИНОМ.		От 20 мая
1.1.2.4.2.11.2		Агаханов Н.,Х.,	8	Лаборатория знаний»; АО		2020 года
1.1.2.4.2.11.3		Петрович А.Ю. и др.	9	«Издательство		№ 254
				«Просвещение»		
1.1.2.4.3.10.1	Геометрия	Смирнов В.А.,	7	ООО «БИНОМ.		От 20 мая
1.1.2.4.3.10.2		Смирнова И.М.	8	Лаборатория знаний»; АО		2020 года
1.1.2.4.3.10.3			9	«Издательство		№ 254
				«Просвещение»		
1.1.3.4.1.25.1	Математика: алгебра и начала	Мордкович А.Г.,	10	AO «Издательство	Польшакова О.Е.,	До 28
1.1.3.4.1.25.2	математического анализа,	Семенов П.В.,	11	«Просвещение»	Еремченко И.А.,	июня
	геометрия. Алгебра и начала	Александрова Л.А.,			Кожанова А.П.,	2025 года
	математического анализа	Мардахаева Е.Л.			Кочагина М.Н.	
/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7			

Адрес обратной связи:

kaf.matematika@gmail.com

Авторский сайт:

https://elenamard.jimdo.com/

Сайт издательства:

http://lbz.ru/

Мы готовы с диалогу!