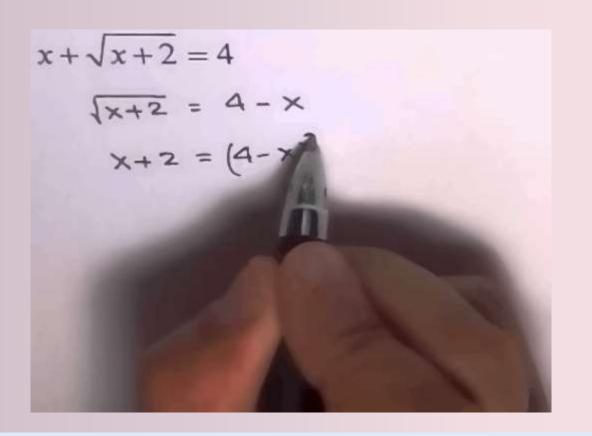


Откуда берутся посторонние корни? Как корни не потерять?



Откуда берутся посторонние корни? Как корни не потерять?

Возведём обе части уравнения $\sqrt{x} = 1$ в квадрат. Получим уравнение x = 1, равносильное исходному.

Возведём обе части уравнения $\sqrt{x} = -x$ в квадрат. Получим уравнение $x = x^2$, которое не равносильно исходному.

Почему, пользуясь определением логарифма при решении уравнения

$$\log_{x} 4 = 2$$
,

мы получаем уравнение-следствие $x^2 = 4$?

Почему умножение обеих частей уравнения $\sqrt{x} = 1$ на двучлен x + 2: $(x + 2)\sqrt{x} = x + 2$ не приводит к появлению посторонних корней, а умножение на двучлен x - 2: $(x - 2)\sqrt{x} = x - 2$ — приводит?

В большинстве случаев процесс решения уравнения сводится к построению цепочки уравнений, в которой последующее звено заменяет предыдущее:

$$5x + 10 = 10x - 7;$$

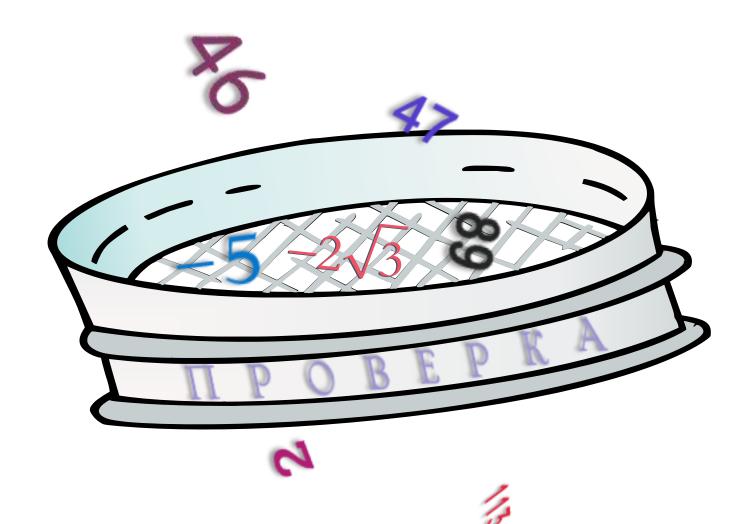
 $5x - 10x = -7 - 10;$
 $-5x = -17;$
 $x = \frac{17}{5}$
 $x = -1.$
 $x^2 - 1 = 0;$
 $x = 0;$
 $x = 1,$
 $x = -1.$

При переходе к новому уравнению возможны три случая:

- 1) множество корней уравнения не изменяется;
- 2) в множество корней попадают новые элементы (их называют посторонними корнями исходного уравнения);
 - 3) множество корней теряет свои элементы.

Два основных приёма решения уравнений

Метод следствий Метод равносильных переходов



Главное заключается в том, что надо понимать, какое решение нуждается в проверке, а какое — нет. Другими словами, зафиксировать тот момент процесса решения, после которого возможно появление посторонних корней.

Причины появления посторонних корней

Расширение области определения уравнения

Вне области определения уравнения корней нет

Вне области определения уравнения корней нет.

Поэтому преобразование уравнения, при котором расширяется область его определения, может привести к появлению посторонних корней.

Областью определения уравнения $\log_x 4 = 2$ является множество (0; 1) \cup (1; $+\infty$).

Пользуясь определением логарифма, получаем уравнение $x^2 = 4$, областью определения которого является множество \square .

Расширение области определения исходного уравнения привело к появлению постороннего корня x = -2.

Решите уравнение
$$\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} = \cos^2 x - \sin 2x.$$

 $\int \sin^2 x - \sin x \cos^2 x + \cos^2 x - \sin 2x,$ Поскольку x = 0, то получаем $\sin x = 0$. Отсюда $x = \pi n, n \in \square$. Истанусь: на метупь сирупуст шозначение выражения $\sin x + \cos x$ отлично от нуля. $\sin^2 x - \sin x \cos x + 2\sin x \cos x = 0$; $\sin x (\sin x + \cos x) = 0$. **OTBET.** $X = \pi n, n \in \square$.

Этот пример показывает, что расширение области определения уравнения не всегда приводит к приобретению посторонних корней. Возникает естественный вопрос: надо ли было вводить ограничение $\sin x + \cos x \neq 0$?

О магическом слове из трёх букв О. Д. 3.

Спасает ли ограничение в виде области определения уравнения от всех бед? Областью определения уравнения $\sqrt{x} = -x$ является множество $[0; +\infty)$. Возведя в квадрат обе части данного уравнения, получим уравнение-следствие $x = x^{2}$, которое имеет посторонний корень x = 1. Причём этот посторонний корень входит в область определения.

Сужение области определения уравнения

Если расширение области определения уравнения может привести к появлению посторонних корней, то её сужение — возможная причина потери корней.

Областью определения уравнения $\log_2(x-1)^2 = 0$ является множество $(-\infty; 1) \cup (1; +\infty)$. Это уравнение имеет два корня: x = 0 и x = 2.

Областью определения уравнения $2\log_2(x-1) = 0$ является множество (1; $+\infty$). Это уравнение имеет один корень x = 2.

Произошла потеря корня x = 0, потому что при таком переходе область определения сузилась ровно на множество ($-\infty$; 1).

Опасные формулы

Часто причиной изменения множества корней уравнения является применение равенств, правая и левая части которых имеют разные области определения.

$$X = \frac{XY}{Y}$$

$$X = (\sqrt{X})^2$$

$$\sqrt{xy} = \sqrt{x} \cdot \sqrt{y}$$

$$\log_a x^2 = 2\log_a x \quad \sin 2x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x}$$

$$tg(x + y) = \frac{tgx + tgy}{1 - tgxtgy}$$

В каждом из этих равенств область определения выражения, стоящего в правой части, является подмножеством области определения выражения, стоящего в левой части. Поэтому применение этих равенств слева направо может привести к потере корней, а справа налево — к появлению посторонних корней.

 $\sqrt{xy} = \sqrt{x} \cdot \sqrt{y}$

$$X = \frac{XY}{V} \qquad \qquad X = (\sqrt{X})^2$$

$$\log_a x^2 = 2\log_a x \quad \sin 2x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x} \quad \operatorname{tg}(x + y) = \frac{\operatorname{tg} x + \operatorname{tg} y}{1 - \operatorname{tg} x \operatorname{tg} y}$$

Решите уравнение $\frac{\operatorname{tg}2x - \operatorname{tg}x}{1 + \operatorname{tg}2x\operatorname{tg}x} = 1.$

Имеем: tg x = 1. Получили уравнение-следствие, поскольку исчезло б граничение соз $2x \neq 0$. Данное уравнение равносильно системе $x \neq \frac{\pi}{4} + \frac{\pi}{2}, k \in \square$. Эта система решений не имеет.

Otbet. \emptyset .

$$x \neq \frac{\pi}{4} + \frac{\pi k}{2}, k \in \square.$$

Решите уравнение $\sqrt{(x-1)^2(x-3)} = x-1$.

Ребласт ц-өнө-гореу ред в нежу уразыност уразыны у меюжедов $\{1\}$ $\forall [3; +\infty)$. Очевидно, что число 1 является корнем данного уравнения. приводит x = y рав (жени x = 3) $\sqrt{x} = 3$ $\sqrt{x} = 3$ $\sqrt{x} = 3$ $\sqrt{x} = 1$, область **Ответ**еления которого — множество [3; $+\infty$). Поэтому число 1 не является корнем полученного уравнения, то есть такой переход ведёт к потере этого корня.

Решите уравнение
$$tg\left(\frac{5\pi}{4} + x\right) = -1 - 5 \operatorname{ctg} x$$
.

В резуль батекприменения тождества числа вода
$$\frac{4}{4}$$
 $\frac{2}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

Прибавление к обеим частям уравнения одного и того же выражения

Переход от уравнения f(x) = g(x) к уравнению f(x) + h(x) = g(x) + h(x).

Пример:
$$\frac{1}{x-5} + x^2 = 25 + \frac{1}{x-5}$$
.

Умножение обеих частей уравнения на одно и то же выражение

Упражнение. Как может измениться (расшириться или сузиться) множество корней данного уравнения, если:

1) уравнение (|x|+3)f(x) = 2|x|+6 заменить на уравнение f(x) = 2;

- 2) уравнение $\frac{f(x)}{x^2+1} = 0$ заменить на уравнение
- f(x) = 0;
- 3) уравнение (x + 1)f(x) = x + 1 заменить на уравнение f(x) = 1;
- 4) уравнение $\frac{f(x)}{x+1} = \frac{g(x)}{x+1}$ заменить на уравнение
- f(x)=g(x);
- 5) уравнение f(x) = g(x) заменить на уравнение (x+1)f(x) = (x+1)g(x)?

Решите уравнение
$$(\sqrt{4+x}+2)(\sqrt{4+x}+2x-1)=12x$$
.

Умножим обе насти данного уравнения на выражение
$$\sqrt{4+x}-2$$
: $-2=12\sqrt{4+x}-24$. Получили поствро мний жовень 1 $x=12$ за $\sqrt{4+x}$ хор ней уравнения $\sqrt{4+x}-2=0$. $x(\sqrt{4+x}+2x-1)=12x(\sqrt{4+x}-2)$; $x=0$, $\sqrt{4+x}+2x-1=12\sqrt{4+x}-24$.

Переход от уравнения f(x) = g(x) к уравнению $\phi(f(x)) = \phi(g(x))$

Почему уравнения x = 2x - 1 и $2^x = 2^{2x-1}$ равносильны, а уравнения x = 2x - 1 и $\sin x = \sin(2x - 1)$ не являются равносильными?

Если определённая на \square функция $y = \varphi(t)$ обратима, то равенство $t_1 = t_2$ выполняется тогда и только тогда, когда $\varphi(t_1) = \varphi(t_2)$. Поэтому в этом случае уравнения f(x) = g(x) и $\varphi(f(x)) = \varphi(g(x))$ равносильны. Если же определённая на \square функция $y = \varphi(t)$ не является обратимой, то из равенства $\varphi(t_1) = \varphi(t_2)$ не обязательно следует, что только $t_1 = t_2$. Поэтому уравнение $\varphi(f(x)) = \varphi(g(x))$ является следствием уравнения f(x) = g(x).

Возведение обеих частей уравнения в чётную степень приводит к уравнению-следствию, а возведение в нечётную степень — к равносильному уравнению.

Это связано с тем, что функция $y = x^{2k}$ ($k \in \square$) не является обратимой, а функция $y = x^{2k+1}$ ($k \in \square$) — обратимая.

Функция $y = x^{2k}$ ($k \in \square$) обратима на множестве $[0; +\infty)$. Мы пользуемся этим фактом в виде такой теоремы:

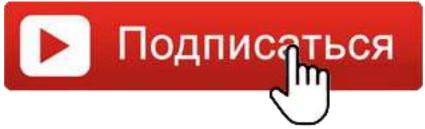
Если для любого $x \in M$ выполняются неравенства $f(x) \ge 0$ и $g(x) \ge 0$, то уравнения f(x) = g(x) и $(f(x))^{2k} = (g(x))^{2k}$ ($k \in \square$) равносильны на множестве M.

Решите уравнение $\sqrt{2x-3} + \sqrt{6x+1} = 4$.

Ртенада
$$\sqrt{2}x-3$$
 $\sqrt{6}x^3+1=9$ обе части уравнения, $\sqrt{2}x-3 \cdot \sqrt{6}x+1=$ уравнения принимают неотрицательные значения. Поэтому данное уравнению теореме равносильно уравнению $\sqrt{2}x-3+\sqrt{6}x+1=1$ $\sqrt{2}x-3+\sqrt{2}x+1=1$ $\sqrt{2}x-3+$

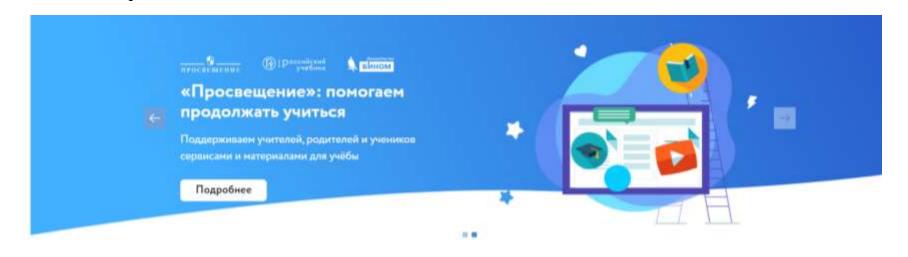
Канал автора на

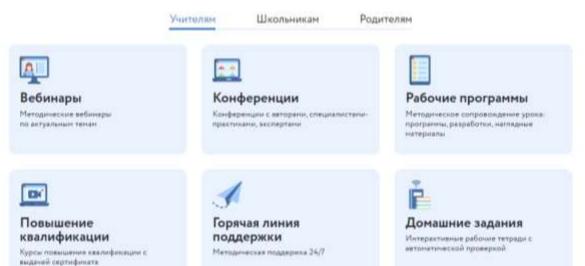
Математика. По страницам учебников Мерзляка и Ко



http://bit.ly/YakirMS

Просвещение. Поддержка





- Портал, на котором собраны материалы в помощь учителям и родителям для организации обучения
- Консультации при выполнении домашних заданий в видеоформате
- Обмен лучшими практиками, их апробация и распространение в сотрудничестве с органами управления образованием

ЖЕЛАЕМ ТВОРЧЕСКИХ УСПЕХОВ!

Отдел методической поддержки педагогов и ОО

Ведущий методист по математике Зубкова Екатерина Дмитриевна

Моб. телефон 8 (919) 839-05-78

E-mail: <u>EZubkova@prosv.ru</u>

Группа компаний «Просвещение»

Адрес: 127473, г. Москва, ул. Краснопролетарская, д. 16, стр. 3, подъезд 8, бизнес-центр «Новослободский»

Горячая линия: vopros@prosv.ru

Уважаемые коллеги!

Заинтересовавшие вас пособия вы можете приобрести

в нашем интернет-магазине shop.prosv.ru

со скидкой 10% по промокоду

WEBPROSV