

НОУ ДПО «Институт системно-деятельностной педагогики» ФЕДЕРАЛЬНАЯ ИННОВАЦИОННАЯ ПЛОЩАДКА СДП ГРУППА КОМПАНИЙ «ПРОСВЕЩЕНИЕ»

9 КЛАСС

ЦИКЛ ВЕБИНАРОВ «ШАГ ЗА ШАГОМ»
ПО НЕПРЕРЫВНОМУ КУРСУ МАТЕМАТИКИ
«УЧУСЬ УЧИТЬСЯ» (ДО-НО-ОО) Л.Г. ПЕТЕРСОН

ВЕБИНАР № 4 для учителей МАТЕМАТИКИ

9 КЛАСС.

Решение уравнений и неравенств высших степеней

Грушевская Лилия Аркадьевна старший методист НОУ ДПО «Институт системно-деятельностной педагогики» grushevskaya@sch2000.ru

НОВИНКИ

ПЛАНИРОВАНИЕ 9 класс (3 ч в неделю (102 ч))

	Глава 4. Решение уравнений и неравенств высших степеней (42 ч)									
	§ 1. Развитие понятия корня (6 ч)									
49	4.1.1	Корни высших степеней	OH3							
50	4.1.1	Корни высших степеней С	PT							
51	4.1.2	Преобразование выражений, содержащих корни <i>n</i> -й степени	ОНЗ							
52	4.1.2	Преобразование выражений, содержащих корни <i>n</i> -й степени С	PT							
53	4.1.1-3.1.2	Корни высших степеней. Преобразование выражений,	Р							
		содержащих корни <i>п</i> -й степени. С–11								
54	4.1.4	Функция $y = \sqrt[n]{x}$ и ее график.	ОНЗ							

ПЛАНИРОВАНИЕ 9 класс (3 ч в неделю (102 ч))

§	§ 2. Решение простейших иррациональных уравнений и неравенств (6 ч)							
55	55 4.2.1 Иррациональные уравнения							
56	4.2.1	Иррациональные уравнения С	PT					
57	4.2.1	Иррациональные уравнения С-12	Р					
58	4.1.1-4.2.1	Задачи для самоконтроля к главе 4 С	PT					
59-60	4.1.1-4.2.1	Контрольная работа № 5	ОК					

ОСОБЕННОСТИ СОДЕРЖАНИЯ ВОПРОСА «Решение уравнений и неравенств высших степеней »

Механизмы формирования мотивации к изучению математики

ЧТО ОБЕСПЕЧИВАЕТ МОТИВАЦИЮ: «НАДО» - «ХОЧУ» - «МОГУ»?

ПРИНЦИП ДЕЯТЕЛЬНОСТИ

ПРИНЦИП НЕПРЕРЫВНОСТИ

Я ЗНАЮ, КАК «НАДО» УЧИТЬСЯ \to У МЕНЯ ПОЛУЧАЕТСЯ \to «Я МОГУ» \to «Я УСПЕШЕН» \to «ВСЁ ХОРОШО! Я МОЛОДЕЦ!».

принцип психологической комфортности

Механизмы формирования мотивации к изучению математики

5 класс • часть 1

829

831

Число x называется **квадратным корнем** из числа y, если $x^2 = y$. Как называется в этом случае число y?

ПРИНЦИП НЕПРЕРЫВНОСТИ

Формирование **опыта** математической деятельности **с опорой на известные знания**.

- Натуральное число *а* называется **точным квадратом**, если существует квадратный корень из числа *а*, являющийся натуральным числом.
- а) Приведи несколько примеров точных квадратов и примеров чисел, не являющихся точными квадратами.
- б) Перечисли все точные квадраты среди первых 100 натуральных чисел.

Механизмы формирования мотивации к изучению математики

8 класс • часть 2

Пусть a — неотрицательное число. Тогда арифметическим квадратным корнем из числа a называется такое неотрицательное число x, что $x^2 = a$.

Арифметический квадратный корень из числа a обозначают \sqrt{a}

ПРИНЦИП НЕПРЕРЫВНОСТИ

Формирование **опыта** математической деятельности **с опорой на известные знания**.

§ 3. Квадратный корень

- 3.3.1. Арифметический квадратный корень и его свойства
- 3.3.2. Преобразование выражений с корнями.

4.1.1. Корни высших степеней

Уроки 49 (ОН3)

ЦЕЛЬ:

Новое:

- кубический корень, корень *n*-й степени, арифметический корень *n*-й степени;
- свойства корня *n*-й степени, способы их применения.

Повторяем:

• изображение на плоскости решения уравнения с двумя переменными.

4.1.1. Корни высших степеней

Уроки 49 (ОН3)

АКТУАЛИЗАЦИЯ:

Какие из данных утверждений являются верными?

a)
$$\sqrt{81} = 9$$
;

B)
$$\sqrt{-25} = -5$$
;

д)
$$\sqrt{4-2\sqrt{3}}=1-\sqrt{3}$$
;

6)
$$\sqrt{64 \cdot 16} = 32$$
;

$$\sqrt{9+16}=3+4$$

б)
$$\sqrt{64 \cdot 16} = 32$$
; e) $\sqrt{a^4 - 2a^2b^2 + b^4} = a^2 - b^2$.

Что вы использовали для выполнения задания?

4.1.1. Корни высших степеней

Уроки 49 (ОН3)

АКТУАЛИЗАЦИЯ:

Какие из данных утверждений являются верными?

a)
$$\sqrt{81} = 9$$
;

B)
$$\sqrt{-25} = -5$$
;

д)
$$\sqrt{4-2\sqrt{3}} = 1-\sqrt{3}$$
;

6)
$$\sqrt{64 \cdot 16} = 32$$
; Γ) $\sqrt{9+16} = 3+4$

$$\sqrt{9+16} = 3+4$$

e)
$$\sqrt{a^4 - 2a^2b^2 + b^4} = a^2 - b^2$$
.

Что вы использовали для выполнения задания?

проверяю себя

a)
$$\sqrt{81} = 9$$

6)
$$\sqrt{64 \cdot 16} = 32$$

д)
$$\sqrt{4-2\sqrt{3}}=1-\sqrt{3}$$
;

4.1.1. Корни высших степеней *АКТУАЛИЗАЦИЯ:*

Уроки 49 (ОН3)

Определение.

Пусть a — неотрицательное число. Тогда **арифметическим корнем из числа а** называется такое неотрицательное число x, что $x^2 = a$.

Арифметический квадратный корень из числа a обозначают \sqrt{a}

4.1.1. Корни высших степеней *АКТУАЛИЗАЦИЯ:*

Уроки 49 (ОН3)

Свойство 1. (основное тождество)
$$(\sqrt{a})^2 = a$$
, где $a \ge 0$

Свойство 2. (основное свойство корня)
$$\sqrt{a^2} = |a|$$
, где $a \in R$

Свойство 3.
$$(\sqrt{a})^{2n} = a^n$$
, где $a \ge 0$, $n \in N$

Свойство 4.
$$\sqrt{a^{2n}} = |a^n|$$
, где $a \in R$, $n \in N$

Свойство 5.
$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
, где $a \ge 0$ и $b \ge 0$.

Свойство 6.
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
, где $a \ge 0$ и $b > 0$

Свойство 7. Если
$$a > b$$
, то $\sqrt{a} > \sqrt{b}$, где $a > 0$ и $b \ge 0^1$

Если
$$a < b$$
, то $\sqrt{a} < \sqrt{b}$, где $a \ge 0$ и $b > 0$

4.1.1. Корни высших степеней

Уроки 49 (ОН3)

АКТУАЛИЗАЦИЯ:

Перечертите в тетрадь и заполните таблицу:

a	0	1	-1	2	-2	3	-3	4	-4
a^3									
a^4									

Почему во второй строке таблицы есть и положительные, и отрицательные числа, а в третьей только неотрицательные?

4.1.1. Корни высших степеней *АКТУАЛИЗАЦИЯ:*

Уроки 49 (ОНЗ)

a	0	1	-1	2	-2	3	-3	4	-4
a^3	0	1	-1	8	-8	27	-27	64	-64
a^4	0	1	1	16	16	81	81	256	256

4.1.1. Корни высших степеней ПОНЯТИЕ КУБИЧЕСКОГО КОРНЯ:

Уроки 49 (ОН3)

3 Перечертите в тетрадь и заполните таблицу:

d							
d^3	0	-1	8	-27	64	125	-216

4.1.1. Корни высших степеней ПОНЯТИЕ КУБИЧЕСКОГО КОРНЯ:

Уроки 49 (ОН3)

d	0	-1	2	-3	4	5	-6
d^3	0	-1	8	-27	64	125	-216

4.1.1. Корни высших степеней

Уроки 49 (ОН3)

ПОНЯТИЕ КУБИЧЕСКОГО КОРНЯ:

ПРОБНОЕ ДЕЙСТВИЕ:

4

Перечертите в тетрадь и заполните таблицу:

[x								
	x^3	-10	-9	-2	3	6	9	50	a

- 1) Можете ли вы записать значения переменной x? Как вы думаете, каким образом можно устранить возникшую проблему?
- 2) Прочитайте на с. 3 о кубическом корне и заполните таблицу.

4.1.1. Корни высших степеней

Уроки 49 (ОНЗ)

ПОНЯТИЕ КУБИЧЕСКОГО КОРНЯ:

4

Перечертите в тетрадь и заполните таблицу:

x								
x^3	-10	-9	-2	3	6	9	50	a

- 1) Можете ли вы записать значения переменной x? Как вы думаете, каким образом можно устранить возникшую проблему?
- 2) Прочитайте на с. 3 о кубическом корне и заполните таблицу.

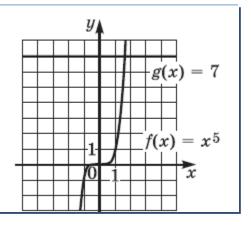
Определение 1. Kyбическим корнем из действительного числа a называется такое действительное число x, что $x^3 = a$ (обозначается $x = \sqrt[3]{a}$).

4.1.1. Корни высших степеней ПОНЯТИЕ КОРНЯ *n* - СТЕПЕНИ:

Уроки 49 (ОН3)

Проанализируйте рисунок и выполните задание:

- 1) Сколько решений имеет уравнение $x^5=7?$ Предположите, как можно записать корень этого уравнения.
- 2) Сопоставьте своё предположение с определением 3 на с. 4 учебника и примените для решения уравнения $x^7 = 3$.
- 3) Познакомьтесь с понятием арифметического корня n-й чётной степени.



4.1.1. Корни высших степеней ПОНЯТИЕ КОРНЯ *n* - СТЕПЕНИ:

Уроки 49 (ОН3)

Определение 3. Пусть $n=3,\,5,\,7,\,9...$ — нечётное натуральное число. Корнем n-й степени из действительного числа a называется действительное число x такое, что $x^n=a$ (обозначается $x=\sqrt[n]{a}$)¹.

Определение 2. Пусть $n=2,\,4,\,6,\,8,\,...$ — чётное натуральное число. A рифметическим корнем n-й степени из неотрицательного числа a называется неотрицательное число x такое, что $x^n=a$ (обозначается $x=\sqrt[n]{a}$).

4.1.1. Корни высших степеней СВОЙСТВА КОРНЯ *n* - СТЕПЕНИ:

Уроки 49 (ОН3)

6 Вычислите:

- a) $\sqrt[3]{64 \cdot 8}$; $\sqrt[3]{64} \cdot \sqrt[3]{8}$; 6) $\sqrt[4]{0,0001 \cdot 16}$; $\sqrt[4]{0,0001} \cdot \sqrt[4]{16}$; B) $\sqrt[5]{-32 \cdot 243}$; $\sqrt[5]{-32} \cdot \sqrt[5]{243}$.
- 1) Что интересного вы наблюдаете? Сформулируйте гипотезу о свойстве корня n-й степени из произведения и докажите её.
- 2) Сопоставьте свой вывод со свойством I на с. 5, примените его и найдите значение произведения $\sqrt[3]{9} \cdot \sqrt[3]{3}$.

4.1.1. Корни высших степеней СВОЙСТВА КОРНЯ *n* - СТЕПЕНИ:

Уроки 49 (ОН3)

I. $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ (при любых a, b, если n нечётно; при $a, b \ge 0$, если n чётно). Доказательство.

Пусть $x = \sqrt[n]{a} \cdot \sqrt[n]{b}$. Тогда $(\sqrt[n]{a} \cdot \sqrt[n]{b})^n = (\sqrt[n]{a})^n \cdot (\sqrt[n]{b})^n = a \cdot b$ (из определения корня следует, что $(\sqrt[n]{a})^n = a$, $(\sqrt[n]{b})^n = b$). Так как $x^n = a \cdot b$, то $x = \sqrt[n]{ab}$ (это следует из единственности корня n-й степени). Итак, $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$.

4.1.1. Корни высших степеней СВОЙСТВА КОРНЯ *n* - СТЕПЕНИ:

Уроки 49 (ОН3)

Вычислите:

a)
$$\sqrt[4]{\frac{81}{625}}; \frac{\sqrt[4]{81}}{\sqrt[4]{625}};$$

6)
$$\sqrt[5]{-\frac{1}{32}}; \frac{\sqrt[5]{-1}}{\sqrt[5]{32}};$$

a)
$$\sqrt[4]{\frac{81}{625}}$$
; $\frac{\sqrt[4]{81}}{\sqrt[4]{625}}$; 6) $\sqrt[5]{-\frac{1}{32}}$; $\frac{\sqrt[5]{-1}}{\sqrt[5]{32}}$; B) $\sqrt[3]{2\frac{93}{125}}$; $\frac{\sqrt[3]{343}}{\sqrt[3]{125}}$.

- 1) Что интересного вы наблюдаете? Сформулируйте гипотезу о свойстве корня n-й степени из частного и докажите её.
- 2) Сопоставьте свой вывод со свойством II на с. 5, примените его и найдите значение частного

4.1.1. Корни высших степеней СВОЙСТВА КОРНЯ *n* - СТЕПЕНИ:

Уроки 49 (ОН3)

II.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
 (при любых $a, b \neq 0$, если n нечётно; при $a \geq 0, b > 0$, если n чётно).

Доказательство.

Пусть
$$x = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
. Тогда $x^n = \left(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\right)^n = \frac{\left(\sqrt[n]{a}\right)^n}{\left(\sqrt[n]{b}\right)^n} = \frac{a}{b}$. Так как $x^n = \frac{a}{b}$, то $x = \sqrt[n]{\frac{a}{b}}$ (это следует

из единственности корня n-й степени). Итак, $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. \blacksquare

4.1.1. Корни высших степеней СВОЙСТВА КОРНЯ *n* - СТЕПЕНИ:

Уроки 49 (ОН3)

III.
$$\sqrt[n]{a^{kn}}=a^k$$
 при $n,k\in N$ ($n-$ нечётно) и любых $a\in R$:

IV. $\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$ для любого $a \in R$, если m и n — нечётные натуральные числа. Если хотя бы одно из натуральных чисел m, n — чётно, то $\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$ при всех $a \geqslant 0$.

V. $\sqrt[kn]{a^k} = \sqrt[n]{a}$, если k — нечётное натуральное число (при всех $a \in R$, если n нечётно, и при $a \geqslant 0$, если n чётно); $\sqrt[kn]{a^k} = \sqrt[n]{a}$, если k — чётное натуральное число (при всех $a \in R$).

VI.
$$\sqrt[nk]{a^{mk}} = \sqrt[n]{a^m}$$
, $m, n \in N$.

VII. Если $x_1>x_2$ и n — нечётное натуральное число, то $\sqrt[n]{x_1}>\sqrt[n]{x_2}$; если $x_1>x_2\geqslant 0$ и n — чётное натуральное число, то $\sqrt[n]{x_1}>\sqrt[n]{x_2}$.

4.1.1. Корни высших степеней

Уроки 49 (ОНЗ)

ТРЕНИРУЮСЬ:

Упростите:
$$\sqrt[16]{a^8}$$
; $\sqrt[3]{a^9}$; $\sqrt[4]{a^{20}}$

Запишите с помощью одного радикала: $\sqrt[5]{\sqrt[7]{a}}$; $\sqrt[3]{\sqrt[4]{a}}$; $\sqrt[3]{\sqrt{a}}$.

Представьте в виде корня с меньшей степенью: $\sqrt[24]{a^{18}}$; $\sqrt[16]{a^{40}}$; $\sqrt[30]{a^{20}}$; $\sqrt[15]{a^{100}}$.

Сравните числа:

B)
$$\sqrt[4]{0,987}$$
 M $\sqrt[10]{1,234}$;

д)
$$\sqrt{10}$$
 и $\sqrt[3]{30}$;

б)
$$\sqrt[3]{\sqrt{10}}$$
 и $\sqrt[3]{9}$;

г)
$$\sqrt[3]{9}$$
 и $\sqrt{5}$;

e)
$$-\sqrt[4]{5}$$
 и $-\sqrt[8]{10\sqrt{6}}$

4.1.1. Корни высших степеней

повторяю:

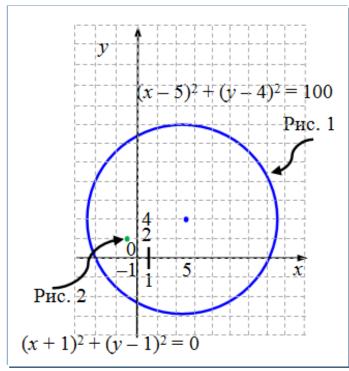
Уроки 49 (ОН3)

- Изобразите на плоскости множество точек, координаты которых удовлетворяют уравнениям:
- a) $(x-5)^2 + (y-4)^2 = 100$;
- 6) $(|x|-5)^2+(y-4)^2=100$;
- B) $(|x|-5)^2+(|y|-4)^2=100$.
- Изобразите на плоскости множество точек, координаты которых удовлетворяют уравнению: $x^2 + y^2 + 2(x y) + 2 = 0$.

4.1.1. Корни высших степеней

повторяю:

№ 18 (a), № 19, c. 9.



Уроки 49 (ОНЗ)

Корни высших степеней 4.1.1.

Уроки 50 (РТ)

- Вычислите значения $\sqrt[8]{8}$, $\sqrt[6]{(-6)^6}$, $\sqrt[4]{256}$, $\sqrt[6]{729}$, $\sqrt[4]{10000}$, $\sqrt[4]{0,0016}$, $\sqrt[6]{\frac{15625}{4006}}$.
- Вычислите значения $\sqrt[9]{27^3}$, $\sqrt[7]{(-7)^7}$, $\sqrt[3]{216}$, $\sqrt[5]{-32}$, $\sqrt[7]{2187}$, $\sqrt[3]{-0.343}$, $\sqrt[5]{\frac{3125}{7776}}$.
 - Сравните числа:
 - a) ³√100 _M ⁶√1000;
- в) $\sqrt[4]{0,987}$ и $\sqrt[10]{1,234}$; д) $\sqrt{10}$ и $\sqrt[3]{30}$; г) $\sqrt[3]{9}$ и $\sqrt{5}$; е) $-\sqrt[4]{5}$ и $-\sqrt[8]{10\sqrt{6}}$

б) $\sqrt[3]{\sqrt{10}}$ и $\sqrt[3]{9}$;

4.1.1. Корни высших степеней

Уроки 50 (РТ)

- Найдите наибольшее целое число, не превосходящее:

- a) $\sqrt[3]{100}$; 6) $\sqrt[7]{1234}$; B) $\sqrt[4]{600}$;

r) ∜-463.

Вычислите значение числового выражения

$$0.5 \cdot \sqrt[3]{48} \cdot \sqrt[3]{1\frac{1}{3}} - \frac{\sqrt[3]{5} - \sqrt[3]{625}}{\sqrt[3]{5}}$$

Представьте в виде корня с меньшей степенью: $\sqrt[24]{a^{36}}$; $\sqrt[25]{a^{40}}$; $\sqrt[32]{a^{24}}$; $\sqrt[25]{a^{55}}$

повторяю:

- Представьте бесконечную десятичную периодическую дробь в виде обыкновенной дроби:
 - a) 1,7(5);

б) 2,(18);

в) 2,(134).

ЗАДАЧИ ПОВЫШЕННОГО УРОВНЯ СЛОЖНОСТИ

Существует ли такое число x, при котором все три числа $2x-\sqrt{x^2+2}$, $\sqrt{x^2+2}-\sqrt{x^2+2006}$, $\sqrt{x^2+2006}-x$ являются целыми?

Предположим, что такое число существует. Сложив данные три целых числа, получим x. Значит, x — целое число. Но тогда и $\sqrt{x^2+2}$ обязано быть целым. Корень из числа является целым, только если под корнем стоит точный квадрат. Значит, x^2+2 — точный квадрат. Но нет двух точных квадратов, различающихся ровно на 2.

Ответ: не существует.

4.1.2. Преобразование выражений, содержащих корни *n*-й степени

Уроки 51 (ОН3)

ЦЕЛЬ:

Новое:

преобразования выражений, содержащих корни *n*-й степени:

- внесение множителя под знак корня;
- вынесение множителя из-под корня;
- > приведение радикалов к общему показателю;
- освобождение от иррациональности в знаменателе (числителе).

Повторяем:

> изображение на плоскости решения уравнения с двумя переменными.

«Дороги не те знания, которые откладываются в мозгу, как жир, дороги те, которые превращаются в умственные мышцы».

Г. Спенсер

4.1.2. Преобразование выражений, содержащих корни *п*-й степени

Уроки 51 (ОН3)

АКТУАЛИЗАЦИЯ

- 1. Самопроверка заданий из домашней работы.
- 2. № 28, № 30, c. 15

```
Даны выражения \sqrt[10]{32a^5} , \sqrt[3]{\frac{a}{b}} , \sqrt[12]{a^{10}b^6} , \sqrt[7]{a^{14}} , \sqrt[3]{\frac{a^{12}}{b^6}} . Какие из них можно
упростить? Упростите их.
```

- 1) Какое из чисел больше:

- а) $3\sqrt{2}$ или $2\sqrt{3}$; б) $4\sqrt{5}$ или $2\sqrt{10}$; в) $6\sqrt{5}$ или $5\sqrt{8}$?
- 2) Вынесите из-под корня множители:
- a) $\sqrt{121}a^8b^5c^{19}$; 6) $\sqrt{256}a^4b^9c^{21}$

4.1.2. Преобразование выражений, содержащих корни *п*-й степени АКТУАЛИЗАЦИЯ:

Уроки 51 (ОН3)

№ 31, c. 15

- 1) Выпишите выражения, подчеркните множители, которые можно вынести изпод знака корня: $\sqrt[3]{27 \cdot 3a^3 \cdot a \cdot x^3 \cdot x^2}$; $\sqrt[5]{32 \cdot a^{10} \cdot x^5 \cdot x^2}$.
- 2) Вынесите множители из-под знака корня. Какими свойствами корня n-й степени необходимо воспользоваться?
- 3) Сравните выполнение задания с решением примеров 1 и 2 на с. 10-11 учебника и упростите выражение $\sqrt[4]{625x^5y^6n^4}$.

№ 35, с. 16 (сравнить с примерами 4 и 5 на с. 12)

Внесите множитель под знак корня:

a) $3\sqrt[4]{2}$;

б) $-7\sqrt[3]{2}$; в) $-4\sqrt[4]{3}$;

4.1.2. Преобразование выражений, содержащих корни *n*-й степени *AKTYAЛИЗАЦИЯ:*

Уроки 51 (ОН3)

Преобразование выражений, содержащих корни *п*-й степени.

- 1. Вынесение множителя из-под знака корня.
- 2. Внесение множителя под знак корня.

4.1.2. Преобразование выражений, содержащих корни *n*-й степени

Уроки 51 (ОН3)

ПРОБНОЕ ДЕЙСТВИЕ:

Попробуй упростить выражение:

$$\frac{\sqrt[4]{2a^2b^3c}}{\sqrt[6]{ab^3c^2}}$$

4.1.2. Преобразование выражений, содержащих корни *п*-й степени

Уроки 51 (ОН3)

ОТКРЫВАЕМ НОВЫЕ ЗНАНИЯ:

Nº 29, № 32 (1, 2), c. 15

Сравните числа:

а)
$$\sqrt{3}$$
 и $\sqrt[3]{4}$;

а)
$$\sqrt{3}$$
 и $\sqrt[3]{4}$; б) $\sqrt[3]{4}$ и $\sqrt[4]{5}$; в) $\sqrt{\sqrt[3]{2}}$ и $\sqrt[3]{\sqrt{19}}$.

Какие свойства вы использовали для выполнения задания?

Представьте выражение в виде корня некоторой степени из рационального числа, используя известные ва<u>м</u> свойства корней:

- 1) Сопоставьте показатели исходных корней и показатель корня, полученного в результате преобразования. Что интересного вы наблюдаете?
- 2) Сформулируйте вывод о способе приведения корней разных степеней к корню одной степени, сопоставьте его со способом, который применили в примере 7на с. 13-14 учебника.

4.1.2. Преобразование выражений, содержащих корни *n*-й степени

Уроки 51 (ОН3)

НОВЫЕ ЗНАНИЯ (ЭТАЛОН):

Преобразование выражений, содержащих корни *п*-й степени.

- 1. Вынесение множителя из-под знака корня.
- 2. Внесение множителя под знак корня.
- 3. Приведение радикалов к общему показателю.

Чтобы воспользоваться свойствами корней может потребоваться *привести* корни к общему показателю. Общий показатель корней является **НОК** показателей всех корней.

4.1.2. Преобразование выражений, содержащих корни *п*-й степени

Уроки 51 (ОНЗ)

ТРЕНИРУЮСЬ:

Вынесите множитель из-под знака корня:

a)
$$\sqrt[3]{128a^5b^4}$$
;

a)
$$\sqrt[3]{128a^5b^4}$$
; 6) $\sqrt[5]{-512x^6y^{15}}$; B)

$$\frac{4096a^{10}}{a^{35}};$$
 r) $\sqrt[4]{81a^9};$

д)
$$\sqrt[4]{49a^9b^5}$$

a)
$$4a^2b\sqrt[3]{a^4b}$$
;

a)
$$4a^2b\sqrt[3]{a^4b}$$
; B) $-xyz\sqrt[3]{\frac{x^4}{x^2}}$;

д)
$$y^3 \sqrt[6]{-y}$$
;

б)
$$-3x^3y^4\sqrt[7]{xy^6}$$
; г) $x^2\sqrt[4]{x^3}$; и) $-a^2$

$$r) x^2 \sqrt[4]{x^3}$$

и)
$$-a^2b\sqrt[6]{\frac{a^5}{b^2}}$$

3) Может ли полученный вывод помочь в упрощении выражений:

$$\sqrt[3]{4} \cdot \sqrt[7]{-\frac{2}{24}}$$
 ? Упростите их

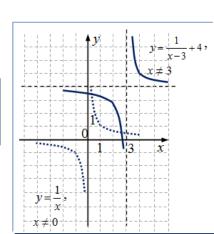
4.1.2. Преобразование выражений, содержащих корни *n*-й степени

Уроки 51 (ОН3)

ТРЕНИРУЮСЬ, ПОВТОРЯЮ:

- Представьте выражения в виде корня некоторой степени из рационального числа:
 - a) $\sqrt[5]{4} \cdot \frac{\sqrt{2}}{6/29}$

- 6) $\sqrt[4]{3} \cdot \sqrt[5]{-\frac{5}{12}}$
- B) $\frac{\sqrt[6]{32}}{\sqrt[8]{18}} \cdot \sqrt[4]{\frac{3}{4}}$
- 2 Упростите выражение $\sqrt{11} \sqrt{3} \frac{8}{\sqrt{14 + 2\sqrt{33}}}$.
- Изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: a) (x-3)(y-4)=1;



4.1.2. Преобразование выражений, содержащих корни *n*-й степени

Уроки 52 (РТ)

АКТУАЛИЗАЦИЯ:

- 1. Самопроверка заданий из домашней работы.
- 2. Избавьтесь от иррациональности в знаменателях дробей:

$$\frac{5}{\sqrt{5}} \quad \frac{ab}{\sqrt{b^3}} \quad \frac{3}{\sqrt[3]{7}} \quad \frac{12}{\sqrt[4]{8}} \quad \frac{ab}{\sqrt[6]{c^5}}$$

4.1.2. Преобразование выражений, содержащих корни *n*-й степени

Уроки 52 (РТ)

Преобразование выражений, содержащих корни *п*-й степени.

- 1. Вынесение множителя из-под знака корня.
- 2. Внесение множителя под знак корня.
- 3. Приведение радикалов к общему показателю.

Чтобы воспользоваться свойствами корней может потребоваться привести корни к общему показателю.

Общий показатель корней является НОК показателей всех корней.

4. Избавление от иррациональности в знаменателе (или числителе) дроби.

4.1.2. Преобразование выражений, содержащих корни *n*-й степени

Уроки 52 (РТ)

1. Вынесите множитель из-под знака корня:

a)
$$\sqrt[5]{96}$$
; 6) $\sqrt[3]{\frac{625}{243}}$ B) $\sqrt[5]{-1215v^8t^{20}}$ r) $\sqrt[6]{192m^7n^{13}}$.

2. Внесите множитель под знак корня:

a)
$$-4\sqrt[4]{3}$$
; 6) $6\sqrt[5]{\frac{3}{64}}$; B) $-mn^2\sqrt[5]{\frac{1}{m^4n^9}}$ r) $x^2\sqrt[4]{x^3}$.

3. Представьте выражения в виде корня некоторой степени из рационального числа:

a)
$$\sqrt{\frac{2}{3}} \cdot \sqrt[7]{-\frac{9}{512}}$$
; 6) $\sqrt[6]{50} \cdot \frac{\sqrt[4]{48}}{\sqrt[3]{30}}$.

4. № 38 (в, г), с. 16. Избавиться от иррациональности в знаменателях.

5. № 49 (в), с. 17. Сравнение чисел.

Уроки 53 (Р)

САМОСТОЯТЕЛЬНАЯ РАБОТА № 11

4.1.1-4.1.2

Корни высших степеней. Преобразование выражений, содержащих корни *п*-й степени

C-11 Вариант 1

Обязательная часть

1. Вычислите значения:

a)
$$\sqrt[4]{(-1)^4}$$

6)
$$\sqrt[5]{(-2)^5}$$

B)
$$\sqrt[3]{-0.343}$$
;

a)
$$\sqrt[4]{(-1)^4}$$
; 6) $\sqrt[5]{(-2)^5}$; B) $\sqrt[3]{-0.343}$; r) $\sqrt[6]{0.000001}$.

2. Преобразуйте выражение:

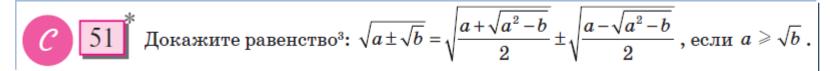
а) вынесите множитель из-под знака корня:
$$\sqrt[3]{\frac{16}{135}}$$
 ; $\sqrt{5\frac{4}{9}x^{10}v^3}$;

- б) внесите множитель под знак корня: $-4\sqrt[5]{a}$; $-3sq^2\sqrt[4]{\frac{1}{a^2}}$, если s < 0.
- **3.** Сравните числа: a) $\sqrt{3}$ и $\sqrt[5]{15}$; б) $\sqrt[3]{-10}$ и $-\sqrt[4]{20}$.

Дополнительная часть

- **1.** Избавьтесь от иррациональности в знаменателе дроби: a) $\frac{12}{\sqrt[5]{6}}$; б) $\frac{p}{\sqrt[4]{t^3}}$, t > 0.
- **2.** Упростите выражение: $\sqrt[3]{3} \cdot \frac{\sqrt[4]{4}}{\sqrt[6]{12}} \left(\sqrt[12]{6} \sqrt{5}\right) \left(\sqrt[12]{6} + \sqrt{5}\right)$.

ЗАДАЧИ ПОВЫШЕННОГО УРОВНЯ СЛОЖНОСТИ



Возведем правую часть равенства в квадрат:

$$\left(\sqrt{\frac{a+\sqrt{a^2-b}}{2}} \pm \sqrt{\frac{a-\sqrt{a^2-b}}{2}}\right)^2 = \frac{a+\sqrt{a^2-b}}{2} \pm 2\sqrt{\left(\frac{a+\sqrt{a^2-b}}{2}\right)\left(\frac{a-\sqrt{a^2-b}}{2}\right)} + \frac{a-\sqrt{a^2-b}}{2} = a \pm 2\sqrt{\frac{a^2-(a^2-b)}{4}} = a \pm \sqrt{b}.$$

4.1.4. Функция $y = \sqrt[n]{x}$ и ее график

Уроки 54 (ОН3)

ЦЕЛЬ:

Новое:

ightharpoonup функция $y = \sqrt[n]{x}$, график, свойства.

Повторяем:

- преобразование выражений, содержащих корни *п*-й степени;
- > определение промежутков возрастания и убывания функции.

4.1.4. Функция $y = \sqrt[n]{x}$ и ее график

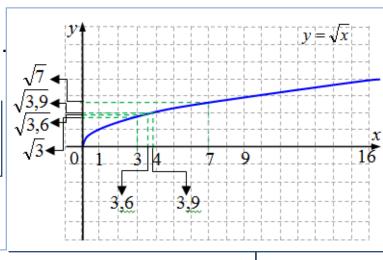
Уроки 54 (ОН3)

АКТУАЛИЗАЦИЯ:

- 1. Самопроверка заданий из домашней работы.
- 2. **№** 76, c. 26.

Какие из данных выражений не имеют смысла? $\sqrt{-9}$; $\sqrt[3]{-8}$; $\sqrt[4]{-0.25}$; $\sqrt[7]{-2}$; $\sqrt[5]{-1}$; $\sqrt[6]{-81}$.

№ 77, c. 26.



Начертите график функций $y=\sqrt{x}$. Определите с его помощью приблизительные значения $\sqrt{3}$ и $\sqrt{7}$. Сравните числа $\sqrt{3,6}$ и $\sqrt{3,9}$, используя график. Какое свойство функции при этом используется?

4.1.4. Функция $y = \sqrt[n]{x}$ и ее график

Уроки 54 (ОН3)

ПРОБНОЕ ДЕЙСТВИЕ:

Попробуй сформулировать основные свойства функции $y = \sqrt[n]{x}$

4.1.4. Функция $y = \sqrt[n]{x}$ и ее график

Уроки 54 (ОН3)

СТРОИМ НОВОЕ ЗНАНИЕ:

№ 78, c. 26

- 1) Объём куба со стороной a см составляет V см 3 . Запишите формулу зависимости a в см от V см 3 .
- 2) Можно ли вычислить число, если известен его куб? Запишите формулу, с помощью которой можно это сделать, обозначив искомое число буквой k, а его куб буквой c.
- 3) Какой единой обобщенной формулой можно записать две предыдущие зависимости? Докажите, что эта зависимость является функциональной.

4.1.4. Функция $y = \sqrt[n]{x}$ и ее график

Уроки 54 (ОНЗ)

СТРОИМ НОВОЕ ЗНАНИЕ:

№ 79, c. 26

1) Задайте функцию $y = \sqrt[3]{x}$ таблично:

x	_	-8	$-\frac{1}{8}$	-1	0	1	$\frac{1}{8}$	8
y								

2) Рассмотрите функцию $y = \sqrt[4]{x}$. Чем отличается область определения этой функции от области определения функции $y = \sqrt[3]{x}$?

4.1.4. Функция $y = \sqrt[n]{x}$ и ее график

Уроки 54 (ОН3)

СТРОИМ НОВОЕ ЗНАНИЕ:

№ 79, c. 26

3) Задайте функцию $y = \sqrt[4]{x}$ таблично:

x	0	$\frac{1}{16}$	1	$\frac{81}{16}$	16
y					

- 4) Постройте графики функций, используя полученные таблицы. Сравните их с графиками, изображёнными на с. 24, 25 учебника.
- 5) Какие общие свойства графиков вы можете отметить? В чём различие? Почему? Сопоставьте их со свойствами функций на с. 25, 26 учебника. Какие из указанных в учебнике свойств вам удалось выявить самостоятельно?

4.1.4. Функция $y = \sqrt[n]{x}$ и ее график

НОВОЕ ЗНАНИЕ:

Основные свойства функции $y = \sqrt[n]{x}$:

- 1. Область определения функции:
 - *при нечетном* натуральном *n*: $D(y) = (-\infty; +\infty);$
 - *при четном* натуральном *n*: $D(y) = [0; +\infty)$.
- 2. Область значений функции:
 - при нечетном натуральном n: $E(y) = (-\infty; +\infty);$
 - *при четном* натуральном *n*: $E(y) = [0; +\infty)$.
- 3. Функция равна нулю при x = 0.

Функция *при нечетном* натуральном *п* положительна при x > 0 и отрицательна при x < 0.

- Функция *при четном* натуральном n положительна при x > 0.
- **4.** Функция строго возрастает на своей области определения, то есть на $(-\infty; +\infty)$ при

нечетном натуральном n и на $[0; +\infty)$ при четном натуральном n.

5. Функция $v = \sqrt[n]{x}$

при нечетном натуральном п нечетна,

а при четном натуральном п не является ни четной ни нечетной.

Уроки 54 (ОН3)

4.1.4. Функция $y = \sqrt[n]{x}$ и ее график

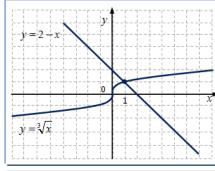
Уроки 54 (ОНЗ)

ТРЕНИРУЮСЬ:

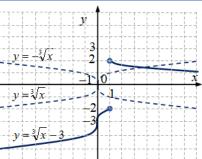
Постройте графики функций:

a) $y = \sqrt[3]{x-3}$; 6) $y = \sqrt[3]{x} - 3$;

Решите графически уравнение $\sqrt[3]{x} = 2 - x$.



Определите, на каких промежутках функция возрастает и убывает: a) $y = 2\sqrt[3]{x} - 3|1 - \sqrt[3]{x}|$;



4.1.4. Функция $y = \sqrt[n]{x}$ и ее график

Уроки 54 (ОН3)

повторяю:

84 Сократите дроби:

a)
$$\frac{a+2\sqrt{a}+1}{a-1}$$

б)
$$\frac{\sqrt{a} + \sqrt{b}}{a\sqrt{a} + b\sqrt{b}}$$
 ;

ЗАДАЧИ ПОВЫШЕННОГО УРОВНЯ СЛОЖНОСТИ

Докажите, что уравнение $\sqrt[2]{2-x^2} + \sqrt[3]{3-x^3} = 0$ не имеет действительных решений.

ОДЗ данного уравнения: $2-x^2 \ge 0 \iff x \in \left[-\sqrt{2}; \sqrt{2}\right]$. Но при таких значениях переменной $3-x^3 \ge 3-\sqrt{2^3}=3-\sqrt{8}>0$. Поэтому при всех допустимых значениях x первое слагаемое неотрицательно, а второе положительно, поэтому сумма не может быть равна нулю.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 55 (ОНЗ)

ЦЕЛЬ:

Новое:

- **простейшие** иррациональные уравнения;
- > методом "угадывания" корня.

Повторяем:

- доказательство иррациональности чисел;
- > нахождение членов последовательности, заданной формулой *п*-го члена;
- исследовать на монотонность последовательность.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ *АКТУАЛИЗАЦИЯ:*

Уроки 55 (ОНЗ)

- 1. Самопроверка заданий из домашней работы.
- 2. № 105 (б, в), с. 35

Какие из утверждений являются неверными?

б)
$$a = b \Rightarrow \sqrt{a} = \sqrt{b}$$
; в) $\sqrt{a} = \sqrt{b} \Leftrightarrow a = b$;

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ *АКТУАЛИЗАЦИЯ:*

Уроки 55 (ОНЗ)

3. Выберите из предложенных уравнений иррациональные и уточните определение иррационального уравнения

a)
$$x^3 + 65 = 1$$
;

B)
$$\sqrt{x^2-16} = \sqrt{5x+8}$$
;

д)
$$\sqrt{x} + \sqrt{x+1} = 4$$
;

6)
$$\sqrt[5]{x^2 - 33} = -1$$
;

r)
$$3x - 7 = 0$$
;

e)
$$5x^2 + 6x - 2 = 0$$
.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ *АКТУАЛИЗАЦИЯ:*

Уроки 55 (ОНЗ)

3. Выберите из предложенных уравнений иррациональные и уточните определение иррационального уравнения

a)
$$x^3 + 65 = 1$$
;

B)
$$\sqrt{x^2-16} = \sqrt{5x+8}$$
;

д)
$$\sqrt{x} + \sqrt{x+1} = 4$$
;

6)
$$\sqrt[5]{x^2 - 33} = -1$$
;

r)
$$3x - 7 = 0$$
;

e)
$$5x^2 + 6x - 2 = 0$$
.

Определение

Уравнение, в котором алгебраическое выражение, содержащее переменную, находится под знаком корня, называется **иррациональным**.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 55 (ОНЗ)

ПРОБНОЕ ЗАДАНИЕ:

Попробуйте решить иррациональное уравнение $\sqrt[3]{x^2-11} = -2$

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 55 (ОНЗ)

ОТКРЫВАЕМ НОВЫЕ ЗНАНИЯ:

№ 106, c. 35

- 1) Решите уравнения $\sqrt{x} = 2$ и $\sqrt[3]{x} = -2$, используя известное понятие корня n-й степени.
- [2) По аналогии решите уравнение $\sqrt[3]{x^2+7}=2$.
- 3) Как можно по-другому описать выполненное в ходе решения преобразование:

$$\sqrt{x}=2 \iff x=2^2,$$

$$\sqrt[3]{x} = -2 \iff x = (-2)^3,$$

$$\sqrt[3]{x^2+7}=2 \iff x^2+7=2^3$$

используя понятие «возведение в степень»? Поясните, почему это преобразование является равносильным.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 55 (ОНЗ)

ОТКРЫВАЕМ НОВЫЕ ЗНАНИЯ:

№ 107. ctp. 35

- 1) С помощью какого преобразования можно свести уравнение $\sqrt{x^2 + x} = \sqrt{x + 4}$ к уравнению, способ решения которого уже известен? Решите уравнение и сделайте проверку. Подумайте, будет ли использованное вами преобразование равносильным.
- 2) С помощью какого преобразования можно свести уравнение $\sqrt{12-4x} = x$ к уравнению, способ решения которого уже известен? Решите уравнение и сделайте проверку. Подумайте, будет ли использованное вами преобразование равносильным.
- 3) Можно ли применять использованные вами способы решения для всех иррациональных уравнений такого вида? Составьте правило решения таких уравнений и сопоставьте его со схемой на с. 34.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 55 (ОНЗ)

ЭТАЛОНЫ:

$$\sqrt{f(x)} = a \quad (a \ge 0) \Leftrightarrow f(x) = a^2; \qquad \sqrt{f(x)} = \sqrt{g(x)} \Leftrightarrow f(x) = g(x) \ge 0;
\sqrt[3]{f(x)} = a \Leftrightarrow f(x) = a^3; \qquad \sqrt[3]{f(x)} = \sqrt[3]{g(x)} \Leftrightarrow f(x) = g(x).$$

$$\sqrt{f(x)} = g(x) \Leftrightarrow \begin{cases} f(x) = (g(x))^2; \\ g(x) \ge 0; \end{cases} \sqrt[3]{f(x)} = g(x) \Leftrightarrow f(x) = (g(x))^3.$$

<u>1-й способ.</u> Для уравнений вида $\sqrt[n]{f(x)} = a$ использовать определение корня n-й степени.

<u>2-й способ.</u> Для уравнений вида $\sqrt[n]{f(x)} = g(x)$ и $\sqrt[n]{f(x)} = \sqrt[n]{g(x)}$ возвести обе части уравнения в n-ю степень, добиваясь перехода к уравнению без знака корня. При чётном n необходимо учитывать возможность появления посторонних корней.

<u>3-й способ.</u> Провести замену переменной $\sqrt[n]{f(x)} = t$, учитывая в ходе дальнейшего решения, что $t \ge 0$ при чётных n.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 55 (ОНЗ)

ТРЕНИРУЮСЬ:

Решите уравнение:

a)
$$\sqrt{2x^2-3x+10}=3$$
;

6)
$$\sqrt{x^2-2x+5}=-2$$
;

Решите уравнение:

a)
$$2x = 1 + \sqrt{x^2 - 5x + 5}$$
;

6)
$$\sqrt[3]{x^2-5x-14-x^3}+x=0$$
.

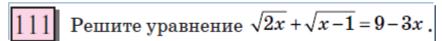
Решите уравнение:

a)
$$\sqrt{x^2 - 3x} = \sqrt{2x - 6}$$
;

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 55 (ОНЗ)

ПРИМЕНЯЮ



При решении данного уравнения удобнее **подобрать** корень и доказать его единственность.

- 1) Если x = 2, то $\sqrt{2 \cdot 2} + \sqrt{2 1} = 9 3 \cdot 2 \Leftrightarrow 3 = 3$ (истинно).
- 2) $\sqrt{2x} + \sqrt{x-1} = 9 3x \Leftrightarrow \sqrt{2x} + \sqrt{x-1} + 3x = 9$. Левая часть уравнения определена при $x \ge 1$. Каждое слагаемое в левой части уравнения задает возрастающую функцию при $x \in [1; +\infty)$. А, значит, функция $f(x) = \sqrt{2x} + \sqrt{x-1} + 3x$ так же является возрастающей, то есть каждое свое значение она принимает только один раз: $f(2) = \sqrt{2 \cdot 2} + \sqrt{2-1} + 3 \cdot 2 = 9$. x = 2 единственное решение исходного уравнения. Ответ: $\{2\}$.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 55 (ОНЗ)

ПОВТОРЯЮ

Дана последовательность $a_n = 9n - 5n^2 + 2$. Сколько в этой последовательности положительных членов? Найдите наибольший член последовательности.

Чтобы найти количество положительных членов, решим неравенство относительно n:

$$-5n^2 + 9n + 2 > 0 \Leftrightarrow -5(n+0,2)(n-2) > 0 \Leftrightarrow (n+0,2)(n-2) < 0$$

$$-5n^2 + 9n + 2 = 0 \Leftrightarrow n = -0.2, n = 2.$$

$$n \in (-0,2; 2)$$
. Но так как $n \in N$, то $n = \{1\}$.

Единственный положительный член данной последовательности будет наибольшим ее членом: $-5\cdot 1 + 9\cdot 1 + 2 = 6$, то есть $a_{\text{наиб.}} = 6$.

Ответ: в данной последовательности один положительный член; $a_{\text{наиб}} = 6$.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 56 (РТ)

Тренировочные задания

134 Решите уравнение:

a)
$$\sqrt{7x-2x^2-1}=2$$
;

B)
$$\sqrt[3]{x^2+15x+25} = -1$$
;

6)
$$\sqrt{x^2-64} = \sqrt{8-6x}$$
;

$$\Gamma$$
) $\sqrt[3]{26-10x} = \sqrt[3]{10-x^2}$.

135

Решите уравнение:

a)
$$x-5+\sqrt{x-2}=3$$
;

6)
$$\sqrt{2x+5} - \sqrt{2x} = 1$$
;

B)
$$x-1=\sqrt[3]{x^3-5x^2+4x+2}$$
.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 56 (РТ)

Самостоятельная работа

142

Решите уравнение:

a)
$$\sqrt{5x-3x^2+7}=3$$
;

B)
$$\sqrt[3]{x^2+11x+1}=-3$$
;

6)
$$\sqrt{40-x^2} = \sqrt{4-9x}$$
;

$$\Gamma$$
) $\sqrt[3]{6+2x^2} = \sqrt[3]{5+4x}$.

143

Решите уравнение:

a)
$$5-x+\sqrt{x-2}=3$$
;

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 56 (РТ)

ПОВТОРЯЮ

132

Напишите первые пять членов последовательности, общий член которой выража-

ется формулой:

6)
$$a_n = \frac{(-1)^n}{n!}$$
.

4.2.1. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Уроки 57 (Р)

САМОСТОЯТЕЛЬНАЯ РАБОТА № 12

4.1.4, 4.2.1

Функция $y = \sqrt[n]{x}$ и ее график. Иррациональные уравнения

C - 12Вариант 1

Обязательная часть

1. Решите уравнение:

a)
$$\sqrt[6]{2x^2 + 8x} = 2$$
;

a)
$$\sqrt[6]{2x^2 + 8x} = 2$$
; 6) $\sqrt[4]{x^2 + 9x + 19} = -1$;

a)
$$\sqrt{6x^2 - 3x - 1} = \sqrt{2x - 1}$$
.

- **2.** Постройте график функции: $v = \sqrt[3]{x} + 2$.
- **3.** Найдите разность меньшего и большего корней уравнения $\sqrt[3]{x^3 + 19x^2 + 11x + 185} x = 5$. Дополнительная часть
- **1.** Докажите, что корень уравнения $\sqrt{6-14x+9x^2+1}=2x$ принадлежит области допустимых значений выражения $\sqrt[4]{\frac{9-x^2}{x^2}}$
- **2.** Решите уравнение: $\sqrt{x+2} + \sqrt{3x-2} = 4$.

ЗАДАЧИ ПОВЫШЕННОГО УРОВНЯ СЛОЖНОСТИ

Решите неравенство $[x] \cdot \{x\} < x - 1$.

Пусть [x] = n, $\{x\} = \alpha$. Тогда неравенство примет вид: $\alpha n < n + \alpha - 1 \iff \alpha n - n - \alpha + 1 < 0 \iff (\alpha - 1)(n - 1) < 0 \iff n > 1$, так как $\alpha = \{x\} < 1$. Значит, [x] = n > 1, то есть $x \ge 2$. *Ответ:* $x \ge 2$.

ЗАДАЧИ ДЛЯ САМОКОНТРОЛЯ

ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ

1. Преобразуйте выражение:

- 1) вынесите множитель из-под знака корня: a) $\sqrt{8m^2n^3}$, б) $\sqrt[3]{64x^9y^5}$, в) $\sqrt[6]{\frac{a^7b^9}{729}}$;
- 2) внесите множитель под знак корня: a) $-5\sqrt[4]{2}$, б) $-0.3a\sqrt[3]{a}$, в) $s^2q\sqrt[8]{-\frac{1}{a^5}}$.
- 2. Сравните числа: a) $\sqrt[4]{40}$ и $\sqrt[5]{50}$, б) $-\sqrt[6]{18}$ и $-\sqrt[3]{4}$
- 3. Представьте выражение в виде корня некоторой степени из рационального числа:
- 4. Решите уравнение:

a)
$$\sqrt[6]{-3x^2 + x + 68} = 2$$

$$5) \sqrt[3]{1-x^2} = -2$$

a)
$$\sqrt[6]{-3x^2 + x + 68} = 2$$
; 6) $\sqrt[3]{1 - x^2} = -2$; b) $\sqrt{2x^2 - 11} = \sqrt{2x + 1}$.

5. Постройте график функции
$$f(x) = \begin{cases} -x^2 + 1, & x \ge 1, \\ -\sqrt[3]{x} + 1, & x < 1. \end{cases}$$

Определите наибольшее и наименьшее значения функции, и при каком значении х они достигаются при $x \in [-1; 2]$.

Уроки 58 (РТ)

ЗАДАЧИ ДЛЯ САМОКОНТРОЛЯ

САМОСТОЯТЕЛЬНАЯ РАБОТА

Уроки 58 (РТ)

- 1. Преобразуйте выражение:
- 1) вынесите множитель из-под знака корня: $\sqrt[4]{162a^5b^{16}}$;
- 2) внесите множитель под знак корня: $-0.25\sqrt{5}$.
- 2. Сравните числа: $\sqrt[6]{12}$ и $\sqrt[4]{5}$.
- 3. Представьте выражение в виде корня некоторой степени из рационального числа:

$$\sqrt[3]{2} \cdot \frac{\sqrt[6]{5}}{\sqrt[4]{60}}$$

4. Решите уравнение:

a)
$$\sqrt[4]{4x^2 - x - 2} = 1$$
;

6)
$$\sqrt[5]{x^2 - 37} = -1$$
;

B)
$$\sqrt{-5x^2+9} = \sqrt{10x-6}$$
.

КОНТРОЛЬНАЯ РАБОТА № 5

Уроки **59-60 (ОК)**

Критерии оценивания контрольной работы № 5

	Количество баллов за каждое задание	Отметка
Обязательная часть	 a) 1 балл; б) 2 балла a) 1 балл; б) 2 балла a) 1 балл; б) 2 балла а) 1 балл; б) 2 балла а) 3 балла; в) 3 балла б) 3 балла; г) 3 балла б. 5 баллов 	«5» – 24–25 баллов «4» – 19–23 баллов «3» – 13–18 баллов «5» – 28–29 баллов «4» – 22–27 баллов «3» – 15–21 балла
Дополнительная часть	 6 баллов; 6 баллов; 	«5» – 5–6 баллов • «5» – 11–12 баллов

КОНТРОЛЬНАЯ РАБОТА № 5

K-5Вариант 1

Обязательная часть

1. Вынесите множитель из-под знака корня:

a)
$$\sqrt[6]{729a^6b^{13}}$$
;

6)
$$\sqrt[4]{\frac{625}{810}}$$

2. Внесите множитель под знак корня:

a)
$$-0,1\sqrt[3]{6}$$
;

a)
$$-0.1\sqrt[3]{6}$$
; 6) $-x^2y^3\sqrt[8]{\frac{x^4}{y^{23}}}$

3. Сравните числа:

a)
$$\sqrt{5}$$
 $\text{ if } \sqrt[3]{10}$; 6) $\sqrt[9]{-3}\sqrt{2}$ $\text{ if } \sqrt[7]{-2}$.

4. Представьте выражение в виде корня некоторой степени из рационального числа:

$$\sqrt[4]{3} \cdot \frac{\sqrt[3]{4}}{\sqrt[6]{18}}$$

5. Решите уравнение:

a)
$$\sqrt[4]{5x^2 - x - 3} = 1$$
;

B)
$$\sqrt{x^2 - 21} = \sqrt{6x - 5}$$

6)
$$\sqrt[3]{x^2 - 31} = -3$$

a)
$$\sqrt[4]{5x^2 - x - 3} = 1$$
;
b) $\sqrt{x^2 - 21} = \sqrt{6x - 5}$;
6) $\sqrt[3]{x^2 - 31} = -3$;
r) $\sqrt[3]{23 - 5x^2} = \sqrt[3]{19 + x}$.

6. Постройте график функции $f(x) = \begin{cases} \sqrt[3]{x-1}, & x \ge 0, \\ x^2 - 1, & x < 0. \end{cases}$

Определите наименьшее значение функции, и при каком значении х оно достигается. Дополнительная часть

1. Упростите выражение:
$$\left(\frac{1}{2\sqrt[4]{a} - \sqrt[4]{b}} + \frac{1}{2\sqrt[4]{a} + \sqrt[4]{b}}\right) \cdot \frac{b - 8\sqrt{ab} + 16a}{4}$$
.

2°. Решите неравенство:
$$\sqrt{x+25} > x-5$$
.

Уроки 59-60 (ОК)

АНОНС декабрь

3 декабря

вебинар № 4

6 класс

ГОДИЧНЫЙ ЦИКЛ ВЕБИНАРОВ ДЛЯ УЧИТЕЛЕЙ МАТЕМАТИКИ 9 декабря четверг **15-16 декабря**

среда, четверг

пятница

Консультация для слушателей ДК

Задача дня

1-9 классы

5-9 классы

21 декабря вторник

вебинар № 5

9 класс

ГОРЯЧАЯ ЛИНИЯ

www.sch2000.ru

Телефон +7 (495) 797–89–77

E-mail:

info@sch2000.ru

