

Виртуальный робот Lego Mindstorms EV3 в TRIK Studio

(O3BE3AHE

роботов

Степаненко О.В., учитель информатики и ИКТ МБОУ БГО «Борисоглебская гимназия № 1», ВКК, региональный методист

Все права защищены. Никакая часть презентации не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в Интернете и в корпоративных сетях, а также запись в память ЭВМ, для частного или публичного использования, без письменного разрешения владельца авторских прав. © АО «Издательство «Просвещение», 2023 г.

Движение вперед, назад, разворот

Программа в TRIK Studio представляется в виде последовательности блоков, соединённых

связями.

Добавление блоков жестами мыши

Действия с блоками

Подключение контроллера LEGO EV3 к TRIK Studio

Настройки		? ×
 Поведение Разное Редактор Роботы Горячие клавиши 	Платформа Lego EV3 Квадрокоптер «Пионер» ТРИК 	Модель робота © 2D модель Автономный режим (USB) Автономный режим (Bluetooth) Интерпретация (USB) Интерпретация (Bluetooth)
одключение	πο USB	Модель робота 2D модель Автономный режим (USB) Автономный режим (Bluetooth) Интерпретация (USB) Интерпретация (Bluetooth)
		ПРОСВЕЩЕНИЕ ОСНОВАНО В 1930

Γ

Блоки действия LEGO EV3

Гудок	Проиграть на роботе звук с фиксированной частотой.
Играть звук	Проиграть на роботе звук с заданной частотой и длительностью.
Моторы вперед	Включить моторы по заданным портам с заданной мощностью.
Моторы назад	Включить моторы в режиме реверса по заданным портам с заданной мощностью.
Моторы стоп	Выключить моторы по заданным портам.
Сбросить показания энкодера	Сбросить показания количества оборотов моторов.

Учитель большой страны б

Блоки ожидания LEGO EV3

	Ждать датчик касания	Ждать, пока не сработает датчик касания.
2	Ждать энкодер	Ждать, пока показания счетчика количества оборотов на заданном моторе не достигнут указанного в значении параметра «Предел оборотов».
	Ждать цвет	Ждать, пока сенсор цвета в режиме распознавания цветов не вернет указанный цвет.
	Ждать интенсивность цвета	Ждать, пока значение, возвращаемое сенсором цвета на указанном порту, не будет сравнимо с указанным в значении параметра «Интенсивность».
	Ждать свет	Ждать, пока значение, возвращаемое сенсором света на указанном порту, не будет сравнимо с указанным в значении параметра «Проценты».

Учитель большой страны

Движение вперед

Движение вперед базовой тележки задается подачей на левый и правый мотор одинаковой скорости.

В TRIK Studio для подачи мощности на мотор существует отдельный блок «Моторы вперед».

Моторы
 Левое колесо:
 Мотор (порт В)
 Правое колесо:
 Мотор (порт С)

Движение назад

Движение назад выполняется аналогично.

Повороты

Повороты можно разделить на 3 типа:

• резкий поворот

мощность подается только на одно колесо

плавный поворот

мощность подается на два колеса, но на одно больше

• поворот на месте

одинаковая мощность с разными знаками на два колеса

Модели алгоритмов

Представленные выше алгоритмы — **тайм-модели**. Движение осуществляется по таймеру. Это «плохой» подход, так как в этом случае выполняемое действие зависит от заряда аккумулятора.

Правильно будет использовать ожидание значения энкодеров.

В этом случае перед элементарным действием необходимо сбросить значения энкодеров.

Встроенный датчик угла поворота (энкодер) мотора Ev3 с точностью 1 градус

Модели алгоритмов

Запуск программ и их загрузка на контроллер LEGO EV3

🧔 TRIK Studio		-		×
Ф <u>а</u> йл Правка <u>В</u> ид <u>И</u> нструменты <u>Н</u> астройки <u>С</u> правка	t			
Аиаграмма поведения робота Sanycruть программу	Редактор свойств	Значени	e	Ð

Размещение файлов на доске

:Padleł

Ольга Степаненко • день

Виртуальный робот Lego Mindstorms EV3 в TRIK Studio

Теория и методика преподавания модуля "Робототехника" в курсе технологии в 5 классе в соответствии с обновленными ФГОС ООО

https://padlet.com/stepanenko2012/legomindstorms-ev3-trik-studio-db9shtn0yv2j87

Энкодеры. Задача 1

Задача 1. Робот находится в синей зоне старта. Робот должен проехать вперед, развернуться на 180°между зонами старта и финиша, проехать задом и остановиться в красной зоне финиша. Использовать энкодерную модель.

Энкодеры. Задача 1. Решение

Энкодеры. Задача 2

Задача 2. Обогнуть угол. Робот должен проехать вперед со скоростью 60, повернуть на 90°, проехать вперед с максимальной скоростью и остановиться в зеленом круге. Использовать энкодерную модель.

Энкодеры. Задача 2. Решение

Самостоятельная работа Задача З. Уборка мусора

Дорогой друг! Твоя задача разработать робота, способного навести порядок на территории. Необходимо все банки переместить в контейнер для мусора (желтый прямоугольник). Перемещать можно сразу несколько банок. Выбирай оптимальный путь передвижения робота.

Самостоятельная работа Задача 4. Штрафной

Дорогой друг! Тебе выпала ответственная миссия пробить штрафной в ворота соперника, отмеченные красный флагом. Рассчитай самый отпимальный путь движения робота, чтобы забить мяч в ворота!

Самостоятельная работа Задача 5. Танец в круге

Задание «Танец в круге»

Необходимо самостоятельно написать программу, напоминающую танец робота в круге, используя обязательные элементы: поворот налево, поворот направо, вращение на месте, движение вперед и назад.

Соревнование «Кегельринг»

Упражнение «Лесенка». Цикл

Упражнение «Парковка»

Задание «Парковка»

Роботу необходимо двигаясь строго по черной линии, объехать первое препятствие справа, второе препятствие объехать слева, затем заехать задом в гараж.

Группа компаний «Просвещение»

127473, г. Москва, ул. Краснопролетарская, д. 16, стр. 3, подъезд 8, бизнес-центр «Новослободский»

Горячая линия: vopros@prosv.ru

Все права защищены. Никакая часть презентации не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в Интернете и в корпоративных сетях, а также запись в память ЭВМ, для частного или публичного использования, без письменного разрешения владельца авторских прав. © АО «Издательство «Просвещение», 2023 г.

